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Abstract. This paper presents a novel approach to represent spatio-
temporal visual information. We introduce a surface-based shape model
whose structure is invariant to surface variations over time to describe
3D dynamic surfaces (e.g., obtained from multiview video capture). The
descriptor is defined as a graph lying on object surfaces and anchored
to invariant local features (e.g., extremal points). Geodesic-consistency-
based priors are used as cues within a probabilistic framework to main-
tain the graph invariant, even though the surfaces undergo non-rigid de-
formations. Our contribution brings to 3D geometric data a temporally
invariant structure that relies only on intrinsic surface properties, and
is independent of surface parameterization (i.e., surface mesh connectiv-
ity). The proposed descriptor can therefore be used for efficient dynamic
surface encoding, through transformation into 2D (geometry) images, as
its structure can provide an invariant representation for 3D mesh models.
Various experiments on challenging publicly available datasets are per-
formed to assess invariant property and performance of the descriptor.

1 Introduction

It is one of the major goals of natural sciences to find invariant properties. In
the 90s, computer vision scientists found several projectively invariant properties
(e.g., viewpoint, illumination and curvature invariants) to characterize 3D object
shape for recognition tasks [1, 2]. As it is difficult to find invariants on general 3D
shapes that are not planar (or simple), local descriptors are used as well to model
invariants and represent 3D object surface as a collection of small patches [3].

In this paper, we propose a new invariant surface-based shape descriptor for
dynamic geometric objects, that is invariant to surface parameterization (e.g.,
surface mesh complexity or connectivity) and visual features (e.g., texture) as it
relies only on intrinsic surface properties and geodesic paths. The descriptor is
defined as a graph lying on object surface and anchored to invariant local fea-
tures (e.g., extremal points). Positions of graph edges and nodes are optimized
using a Bayesian probabilistic framework driven by two geodesic consistency
cues: when surfaces undergo non-rigid deformations over time, the overall graph
structure remains invariant to surface variations. We show that the descriptor
can be applied for efficient encoding of 3D video data (or free-viewpoint video),
which are becoming a popular media [4–7]. Particularly, when each 3D video
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frame is reconstructed individually using multiview stereo techniques, the pro-
duced 3D surface models have no geometric consistency between each other:
vertex number and mesh connectivity are different. It is then not trivial to find
an optimal encoding scheme for the data structure. Moreover, as no adaptive
resolution streaming mechanism exists for 3D video, communication and telep-
resence applications are still tedious on low-bandwidth networks. Although 3D
video data can be post-processed to obtain meshes with consistent topology and
connectivity [8–11], how to cope with geometry variations is still unclear (e.g.,
when the mesh resolution has to dynamically change). Here, inspired by [12], we
propose to use the new invariant surface-based shape descriptor as cut graphs
that cut open surface meshes for parameterization into a square domain. As
the cut graphs are invariant regardless of mesh resolution, 3D video data can be
transformed into sequences of 2D (geometry) images that are suitable for any 2D
video encoding technology (e.g., MPEG-4). Related work is discussed in Sect. 2.
The invariant surface-based shape descriptor is presented in Sect. 3. Section 4
introduces 3D video data encoding using the proposed model. Section 5 describes
various experiments on challenging datasets. Section 6 concludes the paper with
discussions.

2 Related work

Several multi-view video capture systems were developed in the recent years [4–
7] to provide a new media that gives users free-viewpoint visualization of 3D
objects in motion (namely 3D video). Unlike depth maps (2.5D data) which
are unclosed surface, 3D video data represent objects in full 3D as a sequence
of reconstructed closed surfaces (3D meshes). This technology has potentially
several applications in medicine, culture, communication, entertainment, etc. In
practice, 3D video data are reconstructed frame-by-frame using multi-view stereo
techniques [13].

To encode a sequence of 3D meshes, the state-of-the-art consists mainly of:
(1) methods to compress every frame independently [14]; since redundant infor-
mation between frames is not managed, encoding cannot be optimal. (2) tech-
niques designed for 3D animation sequences [15–18]; as they are dedicated to
meshes sharing the same connectivity, they cannot be applied directly to 3D
video data (without post-processing with a surface alignment method [8–11])
and for adaptive bitrate streaming purpose.

On the other hand, the literature has provided numerous 3D shape mod-
els based on volume, surface, global or local properties (e.g., medial axis [19],
skeleton-curve [20], Reeb graphs [21]). Although most of descriptors can capture
intrinsic shape property, they are not suited for dynamic representation as their
structure is usually too noisy. Similarly, skeleton fitting approaches can capture
intrinsic information of shape based on surface or volume [22–24], but are not
particularly invariant in time and often need prior knowledge on the shape to be
described (e.g., a human skeleton). Moreover, once the structure (e.g., topology)
is found, its relationship to surface variations is usually lost [25].
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We propose a new surface-based shape descriptor that has invariant property
to surface variations, and can be used as a cut graph [16, 26] to encode 3D video
data using a transformation into 2D video, by cutting and parameterizing 3D
surface meshes on image planes (see Sect. 4 and [12, 27]). To our knowledge, no
similar model has been designed [1, 2, 28].

3 Invariant surface-based shape representation

3.1 Local feature extraction

Let us assume that dynamic surfaces representing real-world objects in mo-
tion can be approximated by compact 2-manifold meshes. We consider geodesic
distances to characterize surface intrinsic properties, as geodesic distances are
invariant to pose, and robust to shape variations when normalized [21, 9]. Let
µ : S → R denote the continuous function defined on the object surface S:

µ(v) =

∫
S
g(v, s)dS, (1)

where g : S2 → R is the geodesic distance between two points on S. Eq. 1 is
the geodesic integral function whose critical points can be used to characterize
shape (see Morse theory [29, 30]). For example, local maxima usually correspond
to limb extremities of humans or animals while the global minimum corresponds
to the body center. We use a Reeb graph to robustly identify and match critical
points over time using geometry and topology information [21, 31–33] (see Fig. 1).

3.2 Temporal geodesic consistency

Definition 1. Assuming a set of N points B = {b1, ..., bN} defined on a 2-
manifold S, the points v1 and v2 on S are said geodesically consistent with
respect to B if and only if:

∀i ∈ [1, N ], |g(v1, bi)− g(v2, bi)| ≤ ε, (2)

where ε→ 0. If the points in B do not have any particular configuration of align-
ment or symmetry, the geodesic consistency property can be used to uniquely
locate points on S when N > 2. In practice, the unicity is verified by checking
the number of intersections of isovalue lines from B, and ambiguities are solved
by increasing N or adding geometric constraints (e.g., Euclidean distance).

Definition 2. Assuming a set of N points Bt = {bt1, ..., btN} defined on a de-
formable 2-manifold St at time t ∈ [tb, te], the points vt1 and vt2 on St are said
temporally geodesically consistent with respect to Bt in [tb, te] if and only if:

∀t ∈ [tb, te],∀i ∈ [1, N ], |g(vt1, b
t
i)− g(vt+δ2 , bt+δi )| ≤ ε, (3)

where tb < te, t + δ ∈ [tb, te] and ε → 0. g is normalized using the maximum
geodesic distance over all pairs of points on St to preserve geodesic consistency
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when surfaces undergo non-rigid deformations (e.g., scale changes). Figure 1
illustrates temporal geodesic consistency with respect to critical points (top: 8,
bottom: 5) extracted automatically using local geometry and topology properties
(see [33]). Ambiguity maps are obtained by counting the number of candidate
pairs (vt1, v

t+δ
2 ) when ε > 0. We observe that the regions located around object

centers have very low ambiguity (i.e., numerical approximation is not an issue).

In practice, we can search for vt+δ2 = arg minv∈St

∑N
i=1 |g(vt1, b

t
i)− g(v, bt+δi )|.

Fig. 1. Temporal geodesic consistency. a) Critical points extracted on surface
mesh using Reeb graphs [33]. b) Geodesic consistency ambiguity map (darker means
less position ambiguity). c) 50 temporally consistent points chosen randomly.

3.3 Invariant surface-based graph construction

Definition 3. Let Ct = {ct1, ..., ctN} denote a set of invariant local features (e.g.,
local extrema) on St that are tracked over time in [tb, te]. The surface-based
shape descriptor T (Vt,Pt) is a graph on St whose nodes Vt are temporally
geodesically consistent with respect to Ct in [tb, te]. Every edge in Pt of T is
linked to a feature in Ct, and nodes of T represent edge junctions. Here, an
edge consists of a path1 on St. To maintain the graph structure invariant over
time independently from the parameterization of St, we develop a probabilistic
framework where edge positions are optimized using two geodesic consistency
cues (see Fig. 2), while being located in regions of low ambiguity (see Def. 2).

Construction. First, we define an initial graph structure ρ0 on Stb at tb as
either the global minimum (i.e., one point) given by Eq. 1 if Stb is genus-0, or as
a graph cutting handles if the genus is higher (see [34], [35] and Sect. 4). Second,
we initialize the graph: ρ← ρ0. The graph T is then built by iteratively adding

1 A path on a surface is a set of points linked two-by-two by a line.
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Fig. 2. Invariant surface-based shape descriptor. The descriptor is a graph (in
blue) defined on the object surfaces. Graph nodes are maintained geodesically con-
sistent over time, whereas edges vary adaptively to surface deformations. (Bouncing
sequence.)

the shortest edge linking a local feature (e.g., local maxima) in Ctb to the current
graph structure ρ until all elements in Ctb are linked. At each step, the path ρj
given by the pair of points (ctbj , v

tb
j ) ∈ Ctb × ρ verifies:

(ctbj , v
tb
j ) = arg min

(c,v)∈Ctb×ρ
g(c, v). (4)

ρj is linked to ρ: ρ← ρ∪ρj , and vtbj is inserted into the set Vtb (initially empty).

When every feature in Ctb is linked to ρ, we obtain ρ = (
⋃
ρj)∪ρ0 and we finally

set: T ← ρ at tb.

For all t > tb, the invariant model is obtained by building a graph whose nodes
have temporal geodesic consistency with the prior graph nodes and are located
at local maxima or in non-ambiguous regions.. The problem is formulated as an
MRF to find the optimal paths linking the graph nodes using intrinsic surface
properties, so that graph constructions across time are independent from surface
parameterization. The algorithm to construct a graph at t is the following:

1. Extract local features Ct = {ct1, ..., ctN} on St using Eq. 1 and match them
to prior ones in Ct−1 (e.g., using geometry and topology information [33]).

2. Derive an initial structure ρt0 on St geodesically consistent to the prior one.
Note that for genus-0 surface, ρt0 is usually a point located around the object
center. Set the graph at t: ρt ← ρt0.

3. Edges that link the features Ct to the current graph structure ρt are added
iteratively, and in the same order as the prior steps. Let Pt = {pti} denote
the set of points forming a path (a graph edge) linking a feature ct to a node
vt at t, and Dt = {dti} denote the set of points forming the shortest path
linking ct to vt (e.g., using Dijkstra’s algorithm). To obtain the optimal path
Pt = {pti}, the problem is expressed as a MAP-MRF where the surface mesh
vertices at t serve as sites. Probabilities of pti to be at some positions at t
are computed given known priors Pt−1 and Dt. The posterior probability to
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maximize is:

Pr(Pt|Dt,Pt−1) ∝
∏
i

Ed(p
t
i, d

t
i)Ep(p

t
i, p

t−1
i )

∏
i

∏
j∈N (i)

V (pti, p
t
j), (5)

where Ed and Ep are the local evidence terms for a point pti to be at positions
inferred from dti and pt−1i respectively, N (i) is the neighborhood of i, and V
is a pair-wise smoothness assumption (so that Pt forms a path on St). Ed
and Ep are defined as what follows:

Ed(p
t
i, d

t
i) = fd(

∑
k∈[1,N ]

||g(pti, c
t
k)− g(dti, c

t
k)||), (6)

Ep(p
t
i, p

t−1
i ) = fp(

∑
k∈[1,N ]

||g(pti, c
t
k)− g(pt−1i , ct−1k )||), (7)

where fd and fp are Gaussian distributions centered on dti and pt−1i respec-
tively, g is the normalized geodesic distance, ctk ∈ Ct and ct−1k ∈ Ct−1. Note
that indices were simplified for clarity: Pt−1, Pt and Dt may not have the
same number of elements, and dti and pt−1i are the closest point to pti on Dt
and Pt−1. Hence, Eq. 5 estimates the probability of Pt to be geodesically
consistent to the previous edge Pt−1, while being influenced by the shortest
path Dt. Let P? denote the optimal path linking the feature ct to the node
vt. Thus, we have to estimate:

P? = arg max
{Pt}

Pr(Pt|Dt,Pt−1), (8)

where {Pt} denotes all the possible paths linking ct to vt. Shortest paths are
added one-by-one to avoid edge overlapping when linking local features. Ed
acts as a force that attracts the path to a state where the stress is lower (see
Fig. 2) when an elastic deformation occurs or in case of surface noise (e.g.,
3D reconstruction artifact). As well, Ed prevents the model to be subject to
error accumulation over time, causing drift effects. On the other hand, Ep
maintains the graph structure consistent over time, which can be crucial for
some applications (see Sect. 4).
ρt is obtained by iteratively adding paths P?j linking ctj ∈ Ct to the current
graph at node vtj . v

t
j is the closest point on the current graph to:

v̄tj = arg min
v∈ρt

[λ.g(v̂tj , v) + (1− λ).g(v̌tj , v)], (9)

where v̂tj is the point in St geodesically consistent to vt−1j in St−1 with

respect to Ct, v̌tj is the intersection point given by the shortest path from
ctj to ρt, and λ = 0.5 is a weight. (Temporal priors are discarded if λ = 0.)
In addition, vtj is constrained to belong to the edge derived from the edge

containing vt−1j . The structure of T is therefore maintained invariant over

time. Note that priors can be extended to {Pt−k}tb<k<t.
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4. Repeat Step 3. until every feature in Ct is linked to ρt. Finally, the graph T
at t is given by ρt ← (

⋃
P?,tj ) ∪ ρt0.

5. Set t← t+ 1 and repeat Step 1. to 4. for all t < te.

Note that the optimization problem in Step 3. can be effectively solved by dy-
namic programming. Finally, as illustrated in Fig. 3 we obtain a graph that is
invariant over time regardless of the surface parameterization (i.e., mesh com-
plexity and connectivity).

Fig. 3. Invariant property against surface parameterization. The graph struc-
ture is maintained invariant even though the surface mesh complexity and connectivity
change. Here, the number of vertices varies from 2500 to 125 vertices. (Lock sequence.)

4 3D video data encoding

The surface-based shape descriptor T introduced in the previous section can
provide an invariant structure to 3D data obtained independently, such as a
sequence of 3D meshes obtained from multiple view stereo [4, 13, 6]. Hence, we
propose to apply the descriptor for 3D video data encoding using a strategy
inspired by the geometry images [12].

For each frame, the graph structure of T is used as a cut graph ρ that cuts
and opens the 3D surface mesh M into a disk (a genus-0 chart). M is then
mapped onto a flat parameter domain, which will be used as an image plane.
Finally, M is resampled on a regular grid, where the 3D coordinates XYZ are
scaled and stored as RGB pixel components to form a 2D (geometry) image I. To
retrieve M from I, RGB values are simply reconverted to 3D coordinates. When
applying the transformation on a sequence of 3D meshes, the process returns
a sequence of images (i.e., a video). As the graph structure is invariant over
the sequence, consecutive frames vary smoothly and can therefore be efficiently
encoded using any popular codec for 2D video. Note that if a lossy compression
method is used for encoding and alters the border of I, cracks may be observed
on the reconstructed surface around the cut ρ. In that case, a post-processing
step (e.g., mesh joining or hole filling) may be necessary to preserve the topology
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of the initial mesh. The advantage of the proposed invariant surface-based shape
descriptor for 3D video encoding is at least twofold:

1. The shape descriptor can be used as cut graphs to produce smoothly vary-
ing geometry images from real-world 3D video data independently from the
surface parameterization, i.e., even though the mesh resolution or connec-
tivity is inconsistent between consecutive frames. Hence the model allows
for adaptive bitrate streaming application, whereas state-of-the-art methods
cannot be applied [16, 27].

2. In standard parameterization approaches [36, 12, 27], the computation of the
cut graph ρ is obtained iteratively and requires several parameterization
steps to detect all the local extrema one-by-one (e.g., using triangle geomet-
ric stretch). On the other hand, the proposed strategy is one-shot, and still
guarantees that the generated cut path passes through all local extrema of
M (i.e., surface protrusions), which is a crucial condition to preserve the ge-
ometry accuracy after transformation. When the cut graphs are well defined,
the transformation can be used for lossless compression of 3D meshes.

Topology change. As the cut graph passes through all extrema, critical points
usually lie at the boundaries of the parameter domain. When surface topology
changes, the number of critical points may vary, and the graph structure can
locally change. This results in a discontinuity between consecutive geometry im-
ages that cannot be avoided. On the other hand, it guarantees that the original
surface topology is preserved and can be reconstructed from a single chart. Oth-
erwise a surface alignment method could be applied as preprocessing [9–11], but
large resolution variations as shown in Fig. 3 would not be handled and original
topology would be lost. Methods that estimate global geodesic distortions for
shape matching are usually robust to local surface deformation [37, 9]. However,
the measures can be strongly affected by surface topology changes, as opposed to
the proposed descriptor which is only locally affected. Figure 4 shows geometry
image discontinuities when altering geodesic consistency of nodes and adding an
arbitrary critical point. As critical points are matched across time, image regions
with no perturbation remain aligned (see left part of images).

Fig. 4. (Left and Center) Geometry images show discontinuities when graph nodes are
not geodesically consistent. (Right) Adding an arbitrary critical point alters locally the
image boundaries. (Bouncing sequence.)



Invariant Surface-Based Shape Descriptor 9

5 Experimental results

Datasets. For experimental validations, we have tested the algorithm on pub-
licly available datasets of 3D video reconstructed from multi-view images [6, 10].
They consist of real subjects wearing loose clothing and performing various ac-
tions, such as dancing or jumping. Surfaces can therefore vary a lot between two
consecutive frames when the motion is fast. Our experiments aim to assess the
invariant property of the proposed descriptor regardless of surface parameteri-
zation, and its performance (e.g., reconstruction accuracy) when applied for 3D
video adaptive bitrate streaming. We use 3D mesh sequences processed by [11]
as the surface genus is theoretically consistent over the sequences. (In practice,
3D video data can be post-processed using a surface alignment method to pre-
vent surface topology changes [8–11].) In addition, we remeshed the sequences
to cancel all mesh connectivity consistency, and produced mixed resolution 3D
video data containing alternatively 3D meshes of 1000, 500, 250 and 125 vertices.

We perform comparisons to a state-of-the-art parameterization technique [27],
where cut graphs are obtained by iterative parameterizations. The approach,
here named Geometry Image Sequence (GIS), is known to optimally encode
closed 3D surface meshes. Results obtained with our proposed technique on
mesh sequences having same resolution are denoted ‘fixed’, whereas results ob-
tained on sequences with meshes having various resolutions are denoted ‘mixed’.
Computation time for a 1000 vertex mesh is in the order of seconds on dual-core
PC.

Invariant property evaluation. To assess the invariant property of the de-
scriptor to surface variations and its ability to produce consistent geometry im-
ages that varies smoothly, the mean square error of pixel values (MSE) between
consecutive geometry images is computed (smaller MSE is better). It allows us
to estimate how much the geometry images vary over a sequence. In our exper-
iments, the size of geometry images has been fixed to 128× 128 pixels (encoded
in RGB with 8bit per pixel component) for the sake of consistent comparison.
(To achieve optimal streaming, the geometry images should indeed be resized
with respect to the mesh resolution.) Table. 1 shows average MSE obtained on
various sequences. The proposed descriptor shows remarkable invariant property
between consecutive frames: average MSE(fixed) values are very low. Moreover,
the resolution changes do not affect the performance: MSE(mixed) are low as
well. Note that as GIS does not contain any stabilization mechanism: average
MSE(GIS) values are high and are given for comparison.

Fig. 5 shows MSE for the Lock sequence. The other sequences return similar
results. Figure 6 illustrates invariant graphs obtained with our approach with
fixed and mixed mesh resolution.

Reconstruction accuracy. To assess the reconstruction accuracy of geome-
try images obtained from the invariant surface-based shape descriptor used as
cut graphs, Hausdorff distances are computed between original meshes and re-
constructed meshes [38]. Average Hausdorff distances ∆ between ground truth
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Table 1. Average MSE of pixel values between consecutive geometry images.

MSE(GIS) MSE(fixed) MSE(mixed)

Bouncing 35302 2886 3224
Crane 28485 1670 2025
Handstand 30671 1261 3125
Kickup 27700 1938 3753
Lock 22466 1700 3037
Samba 35302 2886 3282

Fig. 5. MSE of Lock sequence. Our approach produces geometry images that vary
very smoothly regardless of surface mesh complexity and connectivity.

Fig. 6. Graph invariant property regardless of surface mesh complexity and
connectivity. (top) shows a mesh sequence with 1000 vertices. (bottom) shows the
same sequence with meshes at different resolutions. Although surface parameteriza-
tions are different, the proposed surface-based shape descriptor computed on the Lock
sequence shows invariant property and adaptivity: graphs and geometry images remain
similar.

sequences and reconstructed surfaces by GIS and our proposed method (with
fixed resolution) are reported in Table. 2. We can observe similar performances
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between the proposed approach and GIS as ∆ is very low for both methods.
Results between original data and simplified meshes (125 vertices) are given for
comparison (see ∆(ref)).

Table 2. Average Hausdorff distances ∆ to ground truth.

∆(GIS) ∆(proposed) ∆(ref)

Bouncing 0.0122 0.0126 0.0885
Crane 0.0126 0.0132 0.0729
Handstand 0.0119 0.0122 0.0920
Kickup 0.0118 0.0120 0.0862
Lock 0.0079 0.088 0.0783
Samba 0.0223 0.0237 0.0913

As shown in Figure 7, our method can achieve accurate reconstruction (com-
parable to GIS) while using an original one-shot processing, as opposed to
standard iterative parameterizations employed by GIS. Additional examples are
given in Fig. 8 showing the descriptor invariant property to surface undergoing
large deformations.

Fig. 7. Hausdorff distances ∆ for Samba sequence. Our approach allows accurate
reconstruction of mesh sequences comparable to state-of-the-art implementation [27]).

Encoding performance. Table. 3 shows 3D video encoding performance with
respect to different strategies. Our method clearly performs better.

6 Conclusion

We present a novel invariant shape descriptor to represent spatio-temporal visual
information that varies over time, such as 3D dynamic surfaces. The proposed
descriptor consists in a surface-based graph that lies on object surfaces, and is
anchored to local features. The overall graph structure is made invariant to sur-
face variations using surface intrinsic geometric properties while surfaces undergo
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Fig. 8. Encoding and reconstruction. Surface-based graphs are shown in red and
blue (for mixed resolutions), reconstructions are shown in grey. Although surfaces un-
dergo strong variations, the invariant surface-based shape descriptor produces smoothly
varying geometry images and accurate surface reconstruction. Sequences are: (Top)
Crane and Samba, (Middle) Handstand, (Bottom) Kickup.

Table 3. 3D video encoding. For each format, the size of each sequence is given in KB.
Standard H.264/MPEG-4 is used for compression of geometry images (128 × 128p).

#fr. OFF(zip) GIS Proposed

Bouncing 174 16,300 304.4 169.9
Crane 173 14,100 283.7 162.7
Handstand 173 24,700 283.4 154.7
Kickup 219 29,900 365.1 197.0
Lock 249 32,400 388.2 204.0
Samba 174 22,200 304.0 173.2

non-rigid deformation. In particular, the graph is defined within a probabilistic
framework using temporal geodesic consistency cues as priors, and is indepen-
dent to surface parameterization. Hence, the descriptor can be used to bring an
invariant structure to 3D geometric data that are produced independently, such
as 3D video obtained from multiple view stereo.
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We show that the proposed shape descriptor can be employed as surface cut
graphs, which enables 3D surface models to be transformed into 2D (geome-
try) images using a one-shot strategy while geometry is accurately preserved.
Moreover, the invariant property of the representation allows the production of
smoothly varying images, regardless of the 3D surface mesh complexity and con-
nectivity. Therefore, the approach is suitable for adaptive bitrate streaming of
3D video data, which was a challenging issue as state-of-the-art techniques are
only designed to optimally encode 3D animated mesh sequences sharing a same
mesh connectivity. For further research, additional surface features such as color
(when available) may be exploited.
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