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Abstract

This paper presents a novel approach that achieves com-
plete matching of 3D dynamic surfaces. Surfaces are cap-
tured from multi-view video data and represented by se-
quences of 3D manifold meshes in motion (3D videos). We
propose to perform dense surface matching between 3D
video frames using geodesic diffeomorphisms. Our algo-
rithm uses a coarse-to-fine strategy to derive a robust cor-
respondence map, then a probabilistic formulation is cou-
pled with a voting scheme in order to obtain local unicity
of matching candidates and a smooth mapping. The sig-
nificant advantage of the proposed technique compared to
existing approaches is that it does not rely on a color-based
feature extraction process. Hence, our method does not lose
accuracy in poorly textured regions and is not bounded to
be used on video sequences of a unique subject. Therefore
our complete surface mapping can be applied to: (1) texture
transfer between surface models extracted from different se-
quences, (2) dense motion flow estimation in 3D video, and
(3) motion transfer from a 3D video to an unanimated 3D
model. Experiments are performed on challenging publicly
available real-world datasets and show compelling results.

1. Introduction
Dynamic surface matching and tracking have become a

growing research field due to the recent progresses in multi-
view video reconstruction (3D video). 3D video consists
in a free-viewpoint video of real-world subjects in motion
immersed in a virtual world. In order to perform the acqui-
sition, several calibrated and synchronized video cameras
are set around the scene (e.g. a studio or a stadium). Sub-
jects are then captured without wearing any special markers
as opposed to motion capture methods (mocap). Thus, the
technique suits to a very wide range of applications such as
surveillance, medicine, sports, entertainment, etc.

3D video reconstruction returns a stream of textured sur-
face models undergoing free-form deformation and repre-
sented by 3D manifold meshes. As every 3D video frame

Figure 1. Complete surface matching of models from different
sequences by geodesic mapping.

is reconstructed independently, surface matching and track-
ing problems are not trivial. To date, most of the existing
approaches rely on color-based feature extraction to derive
correspondences between frames. As a consequence, track-
ing can be lost in poorly photo-consistent regions (due to
lack of texture or uncalibrated colors of image cameras),
and matching is still limited to sequences of a unique tex-
tured model.

We present a novel technique that achieves complete
mapping of dynamic surfaces using geodesic diffeomor-
phisms. The proposed method performs matching and
tracking using shape characteristics rather than appearance
features (such as colors or corners). Hence the algorithm
is invariant to photometric inconsistencies and can handle
3D video sequences of different models (cf. Fig. 1). Our
approach involves a coarse-to-fine mapping strategy to de-
rive a robust correspondence map, and a voting scheme in
a probabilistic formulation to obtain local unicity of match-
ing candidates. The complete surface mapping enables us
to perform: (1) texture transfer between two models from
different sequences, (2) dense motion flow extraction in 3D
video, and (3) motion transfer from a 3D video to an unan-
imated 3D model.

The rest of the paper is organized as follows. The next
section discusses work related to the techniques presented
in this paper. Section 3 presents our geodesic mapping strat-
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egy. Section 4 describes the 3D surface matching process.
Section 5 shows experimental results. Section 6 concludes
with a discussion on our contributions.

2. Related work
An increasing number of multi-view video capture sys-

tems were developed in recent years [13, 16, 10, 7, 2, 21,
8, 11] (cf. Fig. 2). In the same way, the scientific inter-
ests related to 3D dynamic surface matching and tracking
techniques have grown as many applications can indeed be
derived, such as 3D motion flow estimation, temporal cor-
respondence finding, labeling, surface deformation, spatio-
temporally coherent reconstruction, etc. In our framework,
our goal is to achieve complete surface matching of 3D
video frames for texture and motion transfer.

The literature has provided several methods directly re-
lated to dense surface matching and tracking in 3D video.
In general, the process consists in: (1) finding a sparse set
of correspondences between frames and (2) achieve dense
matching by regularization method or mesh deformation.
The correspondence problem is indeed particularly well-
known for surface mesh edition and morphing (cf. [14] for a
survey). Nevertheless it is often required that the user inter-
actively defines numerous pairs of markers on the models
to match, which is impracticable with long 3D video se-
quences. Hence, techniques for automatic surface feature
extraction and matching are still actively under investiga-
tion.

In [28], 3D scene flows are presented as an extension
of optical flows [17] to represent the 3D motion of points.
Optical flows are extracted and regularized in images and
then used to derive the scene flows. In [9], scene flows and
Laplacian mesh editing [18] are combined to track the de-
formation of a high-quality a priori shape model obtained
by laser-scan. In [27], the problem is addressed by combin-
ing Speeded Up Robust Features (SURF) extraction [3] and
Laplacian diffusion to obtain a dense displacement field. To
guarantee the correctness of resulting meshes, surface mor-
phing is applied as a final step. However the main limita-
tion with these methods is the inability to capture the true
deformation of low-frequency surface details (e.g. fingers,
wrinkles in clothes, etc.) due to the implicit smoothing in-
troduced by the mesh deformation process.

In [19], temporal correspondences are estimated by
spherical parameterization and matching. This approach
suits only to surfaces of genus-0. In [21], the authors pro-
pose to use a set of surface descriptors (color feature, cor-
ner descriptor, edge descriptor and region descriptor) to de-
rive a sparse set of points and construct a locally isometric
mapping. Sparse-to-dense surface correspondence is then
achieved using a MAP-MRF formulation. The accuracy
is reported to be in the order of 5-10cm. In [11], meshes
are deformed over time by tracking photo-consistent sur-

Figure 2. 3D video reconstruction from 15 video cameras and
corresponding video frames.

face patches and optimization processes. In [1], SIFT [15]
are used as 2D features to obtain sparse correspondences be-
tween adjacent frames. Thereafter, dense correspondences
are generated by mapping harmonic functions [29] associ-
ated to the sparse points. This approach assumes isomet-
ric deformations, which is not always verified with real-
world data (e.g. with large cloths). In [30], 2D local fea-
tures are extended to 3D feature detectors and descriptors
to improve sparse matching of meshes. The descriptors
can capture photometric properties as well as local geomet-
ric properties (such as mean curvatures). In [24], dense
point clouds from scanner data are registered using a ran-
domized feature matching algorithm relying on geodesics.
As observed, the advantages of using local features such
as SIFT, SURF and corners are the detection accuracy and
robustness whereas local geometric features are more sub-
ject to surface noises due to reconstruction artifacts. On
the other hand, photometric feature matching approaches
require surface models with good texture and color consis-
tency between the multi-view cameras, which is in prac-
tice tedious to manage. Moreover high resolution cam-
eras are necessary to achieve dense matching. Besides, us-
ing photometric features bounds the mesh matching to se-
quences of a unique textured model. In [5], the authors
use geodesics to establish dense correspondence assuming
isometry. Their approach uses a generalized multidimen-
sional scaling (GMDS) which relies on an iterative mini-
mization algorithm. The GMDS technique suits to low res-
olution models (100 vertices) but in our framework models
contain up to 140,000 vertices.

In this paper, we present an novel approach for dense
matching of dynamic surfaces in 3D videos using geodesic
maps. Our technique does not involve any photometric fea-
tures, thus it can be applied to match surface meshes from
different sequences. As the cyclic nature of harmonic func-



Figure 3. Reference point extraction. (a) Input mesh. (b) Extremal points are obtained from the geodesic integral values. (c) Geodesic
distances to reference points are used to locate surface points. (d) Additional reference points improve the geodesic coordinate accuracy.

tions can cause mappings not to be bijective, we use vec-
tor fields of geodesic distances to perform a dense map-
ping between any surface points [22]. Extremal points of a
geodesic integral function [12] defined on the surface model
serve as reference points from which a sparse set of corre-
spondences can be derived. Thus the method can be con-
sidered as a parameterization constrained by the correspon-
dence points. The problem has been formulated as an MRF
energy to minimize with smoothness assumption [23]. Our
approach returns complete surface matchings of mesh mod-
els from different sequences. As a consequence it can be
applied for texture and motion transfer, as well as dense 3D
motion flow estimation.

3. Geodesic distance mapping

We propose to use geodesic diffeomorphisms as an al-
ternative to local photometric features to determine corre-
spondences between surfaces. Texture in real-world 3D
video data is indeed not always consistent from multiple
views due to lighting conditions. Hence surface tracking
can become challenging. Moreover using geometric fea-
tures enables us to perform matching between models of
different sequences. The following subsections present our
strategy to determine correspondences between two surface
meshes. First, robust reference points are extracted using
the global shapes of the surface models. This enables us to
uniquely localize any surface point using barycentric coor-
dinates. Thereafter in order to reinforce local accuracy, an
additional set of reference points are obtained from a ran-
dom selection over the surface. Thus we compute vector
fields containing normalized geodesic distances to all refer-
ence points. Finally, the correspondence problem between
two surfaces is solved using a energy minimization problem
embedded in a coarse-to-fine strategy.

3.1. Robust reference point extraction

We assume 3D surfaces approximated by compact 2-
manifold meshes. Let S = (V,E) be a surface where V
is a finite set of vertex positions in R3 and E defines the
edge connections. According to the Morse theory, a con-
tinuous function µ defined on S characterizes the topology
of the surface on its critical points. We choose the integral
geodesic as Morse function µ, as defined in [12]:

µ(v) =
∫
p∈S

g(v,p)dS and µN (v) =
µ(v)− µmin

µmax − µmin

(1)
where g(v,p) is the geodesic distance on S between two
points v and p belonging to S, and µN : S → [0, 1] is
the function µ normalized with respect to its minimal and
maximal values µmin and µmax. µN is then invariant to
rotation, translation and scale transformations. Moreover
the integral formulation provides robustness to local surface
noise such as outliers (e.g. due to 3D reconstruction arti-
facts). Extremal values of µN return surface critical point
locations which coincide to highly concave or convex re-
gions. Let f : S1 → S2 be a mapping (diffeomorphism)
between two surfaces S1 = (V1, E1) and S2 = (V2, E2).
The points p ∈ S1 and q ∈ S2 are matched by comput-
ing min(µ(p), µ(q)) + min(a(p), a(q)) where a(p) is the
relative surface area around p having µ(p) values [12, 25].

In our experiments on real-world datasets, 3 to 5 maxi-
mal points corresponding to the tip of head and limbs are
usually found. As three points are sufficient to define a
unique barycentric coordinate system, every vertex can be
uniquely identified by geodesic coordinates (a vector field
containing geodesic distances to reference points). This
statement is valid if and only if the three points are non-
collinear which is in practice always true with real-world
data. We obtain the correspondence map f between two sur-
face meshes where the r1 matching maximal values serve as
robust reference points (constraints) (cf. Fig. 3).



Figure 4. Mapping Accuracy. The surface colors indicate the
uniqueness degree of each vertex with respect to (a) 5 reference
points and (b) 15 reference points sampled on the surface. Light
colors indicate regions of potential inaccuracies and dark colors
indicate high confidence area.

3.2. Additional reference points

In 3D video the dynamic surface models are undergoing
free-form deformations which can affect geodesics between
two arbitrary frames (e.g. the deformations are not always
isometric with large cloths). Hence, to guarantee geodesic
consistency we introduce a set of r2 additional reference
points {Ri} ∈ V1. The r2 points are randomly chosen on
the surface using an iterative process and are constraint to be
at least distant to each other by τ to the previously selected
references. The threshold τ is set to obtain an homogeneous
coverage of the whole surface with a sufficient density. Ev-
ery point p of the surface is then identified by a vector field
of size r = r1 + r2 containing geodesic distances to all the
reference points v(p) = [µ1(p), ..., µr(p)]. Let Ri and Tj

be two reference points. If (Ri, Tj) is a matching pair, then:

∀(Ri, Tj) ∈ (S1, S2), Dg(Ri, Tj) < τ, (2)

where Dg =
r∑

k=1

‖µk(Ri)− νk(Tj)‖2, (3)

Dg defines the distance between two geodesic coordinates,
and µk and νk are the geodesic distances to the kth refer-
ence points on S1 and S2 respectively. Note that µk and
νk are normalized to their maximal values in order to be
invariant to the model scale. A few set of reference points
is practically enough to uniquely localize any surface point.
Nevertheless geodesics which are too distant to reference
points may contain errors due to surface noise or strong
elastic deformation. The additional reference points guar-
antee that each surface point can be uniquely identified by
at least n correct reference points using geodesic coordi-
nates, while the remaining coordinates are possibly inaccu-
rate (cf. Fig. 4). As a matter of fact, each reference point
introduces a local isometric mapping, and having reference
points close to regions where topology changes occur re-
duce matching errors (cf. Fig. 5). Hence in practice Dg

should only take into account the n closest reference points.

Figure 5. Matching artifacts due to change in surface topology can
be compensated if some reference points lie in the area.

3.3. Correspondence matching

In our framework the correspondence problem consists
in matching the reference points {Ri} ∈ V1 to a set of
points {Tj} ∈ V2, such that (Ri, Tj) forms a pair if and
only if:

Tj = arg min
Tk∈V2

(Dg(Ri, Tk)) with Dg(Ri, Tj) < τ2, (4)

where the threshold τ2 prevents the matching of points that
are too distant to the reference points. In addition, we set a
voting system to guarantee the correctness of the matching,
such that (Ri, Tj) is a valid pair if and only if ∃m ≥ n,

∀k ∈ [1,m], |µk(Ri)− νk(Tj)| < τ3, (5)

where in practice τ3 > τ2, and n = 8. As the number
of reference points r2 is in the order of 20-25, a greedy
search over all the entire mesh is not optimal, in particu-
lar for high resolution meshes (e.g. |V2| ∼ 40.000 candi-
dates). We propose to adopt a coarse-to-fine strategy which
embeds the vote count to reduce the problem complexity.
By experiments, we observed that we could still obtain an
accurate estimation of the matching points {Tj} by start-
ing the search on a reasonable low resolution mesh (e.g.
3000 vertices, 10000 edges). For each geodesic coordi-
nates v(T c

j ) obtained on the coarse mesh, we locally extract
the closest adjacent vertices N (T c

j ) in the fine mesh (e.g.
3-ring neighbors). The geodesic coordinates v(Tj) on the
fine mesh are then obtained by local optimization of v(Tj)
in N (T c

j ). Therefore, we express the maximum a posteri-
ori Markov Random Field (MAP-MRF) problem where the
posterior probability to maximize is:

p(Tj |N (T c
j )) ∝

∏
j

Dg(Tj , T
c
j )

∏
j

∏
Tk∈N (Tj)

V (Tj , Tk), (6)

where V (Tj , Tk) = |Dg(Tj , Tk)−Dg(T c
j , T

c
k )|, (7)

and V is the smoothness assumption. A Loopy Belief Prop-
agation method can be used to solve this problem [23]. Fi-
nally, we obtain the correspondence map f between two
surface meshes with an extended set of matching reference



Figure 6. Dense matching between two meshes from differ-
ent 3D video sequences. Every point on the destination mesh is
mapped to a point on the source mesh. The colors encode geodesic
distances to 3 reference points located on the head and at the feet
of the models.

points on each surface (cf. Fig. 3). In 3D video, frames
are reconstructed independently. Hence surface meshes do
not share the same connectivity and |V1| 6= |V2| (although
usually similar for consecutive frames of a same sequence).
In practice, it is therefore impossible to define f as a true
bijection without inserting extra vertices on both surfaces.
In our implementation, the morphism returns nearest neigh-
bor approximations on the destination mesh. However as
we deal with quite high resolution meshes, no artifact are
visible.

Furthermore, in the case of consecutive frames from
a same sequence, we can directly compute the probabil-
ity p(Tt) of a candidate Tt ∈ V2 to match the reference
Rt ∈ V1 at t. According to Bayes’ theorem, the posterior
probability p(Tt+1) at t+ 1 can be estimated using p(Tt) as
prior probability:

p(Tt+1) =
p(Tt)ER(Tt)

p(Tt)ER(Tt) + (1− p(Tt))
, (8)

whereER(Tt) = Γ(Dg(Tt, Rt)), Γ being a Gaussian distri-
bution. Consequently, the probability for a candidate Tt+1

to match the reference Rt is estimated to p(Tt+1) at t + 1
and can be used to reduce search spaces.

4. Surface matching

We present an MRF energy minimization formulation to
achieve dense matching of 3D surfaces while keeping rigid-
ity constraints between the matching vertices, and where the
matching references serve as priors.

4.1. Energy formulation

Let P = {pi} be the set of vertex sites on a surface mesh
S1, and L = {lp} be a discrete set of labels corresponding
to the candidate vertices on a surface mesh S2. We propose

to minimize the following MRF energy in order to achieve
the complete mapping of S1 onto S2:

E(f) = Ed(f) + Es(f). (9)

E(f) is the energy of the labeling (or mapping) f : P → L,
Ed(f) is the data term and Es(f) the smoothness term:

Ed(f) =
∑
p∈P

Dg(p, lp), (10)

Es(f) =
∑

{p,q}∈N

λ · |Tp(lp)− Tq(lq)|, (11)

where N is a neighborhood configuration in S2, λ is a con-
stant factor, and Tp(lp) and Tq(lq) are vector flows between
p and lp, and between q and lq respectively. This is an NP-
complete problem which minimization is indeed very com-
putationally expensive using the usual techniques [4, 23].

However in our framework we can dramatically reduce
the label search space by splitting the global optimization
problem into smaller local ones, and consequently speed up
the optimization process. This is allowed as the problem
constraints are independent of each other. The strategy con-
sists in sweeping the surface mesh using front propagations
from reference points in order to expand their matchings to
neighbor regions. As a site vertex p ∈ S1 is visited, we can
determine the corresponding search space on S2 containing
the matching vertex lp by taking advantage of prior matches
on sites {q} ⊂ N (p), where N (p) is the neighborhood of
p (e.g. the 3-ring adjacent vertices). Our assumption is that
if q ∈ N (p), then lp ∈ N (lq). Thereafter lp can be de-
termined by minimizing the energy in

⋃
{q}⊂N (p)N (lq), as

defined in Eq. 9. Figure 6 illustrates a dense matching be-
tween two models of different sequences. The color codes
represent the distances to 3 reference points located on the
head and at the feet of the models, although 15 reference
points were used to achieve the complete mapping. Note
that the models have consequent noise on the surface, mak-
ing the use of local geometric descriptors (e.g. [30]) impos-
sible to use in this case.

5. Experimental results
The algorithms were developed in C++ using a PC

Core2Duo 3.0GHz 4GB RAM. For our evaluation, we
use publicly available academic databases of 3D video se-
quences, such as the free sequence from the University of
Surrey [21], the dance model from INRIA Grenoble [2],
and the yoga and capoeira sequences from Kyoto Univer-
sity [16]. In the free sequence, the subject wears a loose T-
shirt and performs quick dance steps. Every mesh contains
∼ 140.000 vertices and has a very smooth surface. The
dance sequence consists in a dancer performance wearing a
gown. Every mesh has low resolution and contains∼ 1.000



vertices. Both the yoga and capoeira sequences contain
high resolution meshes of ∼ 15.000 vertices, but with a
noisy surface (with bumps). The computation time between
two surface is proportional to the size of both source and
destination meshes (∼ 20s for 30.000 vertices). The most
time consuming step in the computation of the geodesic in-
tegral (cf. Sect. 3.1). We implemented the Dijkstra algo-
rithm to compute shortest paths on mesh surface. The com-
putation complexity isO(N logN),N being the number of
vertices.

Our algorithm is able to robustly handle different kinds
of applications such as texture transfer, wide-timeframe
matching [20], 3D motion flow estimation [27], and mo-
tion transfer [6]. In order to evaluate the accuracy of our
matching, we have computed the flows between consecutive
frames and displaced the source mesh vertices following
the flows. Then we could observe the difference between
the displaced mesh and the destination mesh. We have in-
deed observed very minor differences which were mainly
due to the triangulation difference. In the following sub-
sections, the results are compared to several state-of-the-art
techniques.

5.1. Texture transfer

As illustrated in Fig. 8, the accuracy of our approach
allows us to perform texture transfer between surfaces.
The yoga performer is matched with an untextured surface
model, and transfers her texture to it (left), and the capoeira
performer transfers his texture to the model from the free se-
quence (right). (Note that the previously untextured model
appears in Fig. 6 with the yoga model without texture as
well.) The texture transfer returns globally a good visual
result although some local and minor artifacts can be ob-
served. In particular the wrinkles on the shirts are well
mapped. Obviously the texture transfer performance is op-
timal (i.e. without distortion) if and only if the source and
destination are identical (up to a global scale factor, as the
geodesic coordinates are normalized).

5.2. Wide-timeframe matching

We perform dense surface matchings between wide-
timeframe surface meshes. The process can be achieved
without a prior model or frame-to-frame surface tracking,
as [20]. However, our approach return a complete matching
of the surface, where any point is mapped. The Figure 9
illustrates the wide-timeframe surface mapping on meshes
from the free sequence. The frame #0 is matched with the
frame #125 (left), and with the frame #29 (right). We be-
lieve or mapping outperforms [20] in terms of density.

5.3. 3D Motion flow

Motion flow is obtained my matching the consecutive
frames of a video sequence and allows to visually appre-
ciate the different trajectories of the vertices. The Fig-
ure 10 show the motion flow computed on the dance se-
quence. Our results can be somehow compared to the one
presented in [27]. Nevertheless as we do not deform a mesh
over time, we do not have the connectivity consistency be-
tween consecutive frames, and no vertex tracking over time
is performed. In our framework, the flows are computed
by considering successive pairs of frame and every vertex is
mapped. Thus we obtain dense motion fields. The Figure 11
show the motion flow computed on the capoeira sequence
from two different views. Again, we observe dense motion
fields.

5.4. Motion transfer

Motion transfer is performed by applying the trajectories
of the vertices of a source mesh to the vertices of a destina-
tion mesh. This can be naturally achieved using our ap-
proach as our matching scheme always delivers a complete
mapping between consecutive frames (cf. Fig 7). In prac-
tice a Laplacian editing method is applied to displace the
vertices in order to smooth out outliers [18]. However, the
source and destination meshes should possess a certain de-
gree of similarity, otherwise the motion transfer would not
make sense. In order to extract similar meshes for 3D video
sequences, we can use a topology descriptor such as in [26],
where a topology-based similarity measure is used to re-
trieve and match the models belonging to the same topology
class.

Figure 7. Motion transfert between mesh models. Unanimated
models can be easily deformed under the guidance of a dense ex-
tracted motion flows.

6. Conclusion
In this paper, we present a novel approach to perform

dense matching of 3D dynamic surfaces captured by a set
of multi-view video camera (3D video). We propose to
use geodesics to characterize the surfaces by deriving ref-



erence points which will serve to uniquely identify the sur-
face points. The complete surface mapping is achieved us-
ing a probabilistic scheme which returns uniqueness and lo-
cal smoothness of the solution. Our approach does not in-
volve color-based feature extraction, and therefore is able
to achieve matching of surface models from different se-
quences. Moreover it can be used for texture transfer, 3D
motion flow estimation in 3D video, and motion transfer.
The performances are obtained on publicly available real-
world datasets. Further experiments to evaluate the accu-
racy of matching could be achieved by comparison with
ground-truth manually marked correspondences.
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Figure 8. Surface texture transfer. Left: the yoga performer is matched with an non-textured surface model, and transfers her texture to
it. Right: the capoeira performer transfers his texture to the model from the free sequence. We can observe a globally good mapping.

Figure 9. Wide-timeframe matching. Dense matching is performed between arbitrary frames of the free sequence. Left: frame #0 is
matched with frame #125. Right: frame #0 is matched with frame #29. The links are color coded so that lighter colors (yellow) represent
the most distant parts. We can observe a very dense matching.

Figure 10. Motion flow from the dance sequence. Left: frames 620-636. Right: frames 607-624. Dense flows are extracted between
consecutive frames.

Figure 11. Motion flow from the capoeira sequence. Two views of frames 80-96. Dense flows are extracted between consecutive frames.


