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Abstract

This paper presents a novel approach to skim and de-
scribe 3D videos. 3D video is an imaging technology which
consists in a stream of 3D models in motion captured by a
synchronized set of video cameras. Each frame is composed
of one or several 3D models, and therefore the acquisition
of long sequences at video rate requires massive storage de-
vices. In order to reduce the storage cost while keeping rele-
vant information, we propose to encode 3D video sequences
using a topology-based shape descriptor dictionary. This
dictionary is either generated from a set of extracted pat-
terns or learned from training input sequences with seman-
tic annotations. It relies on an unsupervised 3D shape-
based clustering of the dataset by Reeb graphs, and features
a Markov network to characterize topological changes. The
approach allows content-based compression and skimming
with accurate recovery of sequences and can handle com-
plex topological changes. Redundancies are detected and
skipped based on a probabilistic discrimination process.
Semantic description of video sequences is then automat-
ically performed. In addition, forthcoming frame encoding
is achieved using a multiresolution matching scheme and
allows action recognition in 3D. Our experiments were per-
formed on complex 3D video sequences. We demonstrate
the robustness and accuracy of the 3D video skimming with
dramatic low bitrate coding and high compression ratio.

1. Introduction

Dynamic 3D multi-view stereo reconstruction (or 3D
video) is an image recording technique which produces
free-viewpoint videos of 3D models in motion [9, 19, 11,
5, 4, 2]. It is a markerless motion capture system where
subjects do not need to wear special equipment. The tech-
nology can be employed in many areas of applications
such as cultural heritage preservation, entertainment, sports,
medicine, and so on. It requires a set of calibrated and
synchronized video cameras to capture temporal series of

Figure 1. 3D video content-based skimming. 3D video se-
quences of humans in motion contain slow motions and several
repetitive poses. We introduce the dictionary of topology-based
shape descriptors with Markov model to identify poses and com-
pactly encode 3D video sequences. The proposed technique is
used to perform 3D video skimming and 3D action recognition.

subjects in motion at video rate. 3D mesh models are then
reconstructed using multi-view stereo reconstruction algo-
rithms [16]. In addition, textures are rendered on the re-
constructed 3D object surfaces to obtain high quality vi-
sual effects (e.g. for cloth rendering). Many methods
have recently focused on performance and quality improve-
ments [20, 22]. In particular, one issue is the huge amount
of disk space required which makes the dataset difficult
to handle: the navigation and search for relevant infor-
mation among gigabytes of data is intractable. To date,
3D video compression has been addressed regardless of
content. Moreover existing techniques are not designed
to cope with complex patterns (e.g. 3D shape topology
changes) [7, 24].

We propose to use a dictionary-based encoder ap-
proach [28]. It consists in searching for matches between
a set of patterns contained in a data structure and the data
to be compressed. As the encoder finds a match, it sub-
stitutes a reference to the data position in the data struc-
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ture. Hence redundancies can be efficiently encoded. In
this paper, we introduce the topology dictionary. The dic-
tionary can be generated from a set of extracted patterns
or learned from training input sequences. Pattern extrac-
tion is obtained by unsupervised clustering of the dataset
using enhanced Reeb graphs. They have been designed for
shape matching in large database and can perform efficient
shape retrieval queries [23]. A Reeb graph is a canonical
representation of the topology of the surface, and can be
used to encode 3D meshes with temporal evolution [24].
Furthermore, 3D video compression and skimming is per-
formed by segmenting the sequence and encoding the suc-
cessive subsequences. The dictionary features a weighted
directed graph structure where nodes (or states) represent
patterns and edges characterize topological changes (state
transitions). This Markov network structure allows to draw
statistical information on the video content such as dura-
tion and occurrence probability of frame sets in order to
preserve relevant information and remove redundant data.
Then as an extension, semantic annotations are used to per-
form automatic description of video sequences. In addition,
we take advantage of a Reeb graph multiresolution match-
ing scheme to encode forthcoming frames and achieve 3D
action recognition. When the learned dictionary is used to
encode video sequences, it produces low bitrate coding with
high compression ratio (cf. Figure 1).

The rest of the paper is organized as follows. The next
section discusses work related to the techniques presented
in this paper. Section 3 describes the Reeb graph construc-
tion algorithm. Section 4 presents the topology-based shape
descriptor dictionary with semantic annotations. Section 5
presents 3D video skimming and 3D action recognition.
Section 6 shows experimental results. Section 7 concludes
with a discussion on our contributions.

2. Related work
The most direct way to compress 3D video (cf. Figure 2)

is to apply 3D mesh compression techniques to every sin-
gle frame [7, 3]. Geometry and connectivity compression
can generally guarantee lossless compression quality but is
not optimal since redundant information between frames is
not handled. Various techniques dedicated to 3D animation
sequence compression rely on basis decomposition [1, 10].
Indeed, they are dedicated to mesh sequences having the
same connectivity and then cannot be applied to our data.
Moreover Principal Component Analysis (PCA) methods
are still limited to low resolution meshes due to the signif-
icant computing resources required. In [24], a 3D video
compression strategy based on topology matching between
consecutive frames was proposed. The algorithm consists in
building enriched skeletons which embed 3D shape, texture,
and temporal variations. The 3D video sequence is com-
pactly encoded and can be reconstructed by skinning tech-

Figure 2. 3D video. (Top) Multi-view reconstruction from video
cameras. (Bottom) Corresponding video frames.

niques. However the pitfall is that topological changes of
3D shapes between consecutive frames have to be managed,
and so far the proposed algorithm relies on semi-heuristic
matching rules which are not easy to set when facing com-
plex topological changes.

We propose a genuine content-based encoding strategy
to achieve 3D video compression, skimming and descrip-
tion. The 3D video sequence is modeled by a topology dic-
tionary with Markov network: a weighted directed graph
where nodes represent clusters of topology descriptors, and
edges represent transitions between different poses. The
learning of dictionaries of feature vector clusters (or bags)
have been successfully used for image categorization, seg-
mentation and localization [26, 17, 6], and graphs have
shown interesting applications for 2D video segmentation
and summarization [27, 12]. Hence, we introduce the
topology-based shape descriptor dictionary to learn and in-
dex 3D video patterns. In addition, semantic annotations
provide automatic video description and action recognition
(cf. [21, 25]). To our knowledge, although skimming tech-
niques are successful for 2D videos [18, 14], the extension
to 3D videos with automatic segmentation, encoding and
reconstruction has not been treated yet.

3. Enhanced Reeb graphs of 3D models

The Reeb graph is a high level 3D shape descriptor. It
is an elegant solution to analyze 3D mesh topology and
shape as it gives a graphical representation of surface prop-
erties. This section gives a brief review of the augmented
Multiresolution Reeb Graph (aMRG) [23, 24]. The aMRG
is an enhanced version of a multiresolution Reeb graph.
It embeds topological and geometrical information and
enables shape matching and mesh skinning.



Figure 3. Topology-based shape descriptors. Enhanced Reeb graphs are extracted from 3D video sequences to capture topology informa-
tion. (a) The Morse function µ allows to detect critical points on the mesh surface. (b) shows Reeb graphs of frame #4990 at resolutions
r = 5 to 1. Every node embeds information related to the geometry and topology of an assigned surface region. (c) Examples of Reeb
graphs for different 3D video frames (r = 5). As illustrated surface topology is captured by Reeb graphs.

Reeb graph construction. In our framework, we assume
3D models defined as compact 2-manifold surfaces approx-
imated by 3D meshes. Let S be a mesh surface. Accord-
ing to the Morse theory, a continuous function µ defined on
S characterizes the topology of the surface on its critical
points. The surface connectivity between critical points can
then be modeled by the Reeb graph of µ, which is the quo-
tient space defined by the equivalence relation ∼:
let X ∈ S and Y ∈ S, then X ∼ Y if and only if: (1) they
belong to the same connected component of µ−1(µ(X)),
and (2) µ(X) = µ(Y) [15]. The Morse function µ is de-
fined as in [8]:

µ(v) =

∫
p∈S

g(v,p)dS and µN (v) =
µ− µmin

µmax − µmin

(1)
where g(v,p) is the geodesic distance on S between two
points v and p belonging to S, and µN : S → [0, 1] is
the function µ normalized with respect to its minimal and
maximal values µmin and µmax. As defined, µN is invariant
to rotation, translation and scale transformations. Moreover
the integral formulation provides robustness to local surface
noise such as outliers (e.g. due to 3D reconstruction errors).
Extremal values of µN return surface critical point loca-
tions which coincide to highly concave or convex regions.
The Reeb graph is then constructed by: (1) partitioning the
object surface into regular intervals based on µN values,
(2) assigning a node to every different region in each
interval, and (3) linking nodes of connected regions. The
level of resolution R of the Reeb graph is defined upon the
number of intervals 2R obtained by iterative subdivisions
of [0, 1]. Lower resolution Reeb graphs are obtained by
merging intervals by pairs using a hierarchical procedure
where nodes are linked to a unique parent-node from the
next lower resolution [8]. Thus the multiresolution Reeb
graph is a set of Reeb graphs of various levels of resolution

r = 0...R deduced from the Reeb graph computed at the
highest resolution R (cf. Figure 3).

Node features. In [23, 24], the multiresolution Reeb
graph is augmented with geometrical and topological
features in order to obtain efficient topology-based shape
matching in large dataset of 3D mesh models. Each node
of the graph embeds the relative area of its assigned region,
and the connectivity layout of neighboring nodes. The
following attributes are set for each graph node n at the
highest resolution level: {UN (n), DN (n), UE(n), DE(n)}
standing for the number of connected nodes having a higher
µN value, the number of connected nodes having a lower
µN value, a binary value indicating if n has no neighbor
with a higher µN value, and a binary value indicating if n
has no neighbor with a lower µN value respectively. Then,
at every lower resolution level, the node attributes consist
in the addition of their children-node attributes. Note that
ending nodes have always either UE = 0 or DE = 0 at any
level of resolution r > 0. The embedded features allow to
quickly classify the nodes. They are encoded together with
multiresolution Reeb graph structures as feature vectors.

Similarity function. The similarity evaluation between two
models M and N is obtained by computing the SIM func-
tion on the set Cr of pairs of topologically consistent nodes
within a coarse-to-fine approach from r = 0 to R:

SIM(M,N) =

R∑
r=0

∑
(m,n)∈Cr

sim(m,n) (2)

where sim measures the difference between two node fea-
tures [23]. We observe that the feature vectors do not
have a fixed size (as they depend on the number of graph
nodes) and the multiresolution matching scheme is crucial
for tractability as it avoids the NP-complete problem of
graph matching.



4. Topology dictionary
We propose to analyze the content of training 3D data

to identify poses, and encode sequences using pattern ref-
erences. The search is operated by Reeb graph match-
ings. The dataset is clustered into topology classes and a
weighted directed graph is built upon the timing of the se-
quence as a Markov network. The overall structure stands
for the topology-based shape descriptor dictionary.

4.1. Dataset unsupervised clustering

We assume a training 3D video sequence composed by a
set of 3D mesh modelsM = {m1, ...,mT }. Feature vec-
tors (of aMRG) are computed for every model at resolution
level R. Let Mt ⊆ M denote the set of feature vectors as-
sociated to an element mt. The training datasetM is recur-
sively split in subsets Mt and Nt according to a threshold τ
on the SIM function (cf. Eq.( 2)):

Mt = {n ∈ Nt−1|SIM(mt, n) < τ}, (3)
Nt = Nt−1 \Mt, (4)

whereN0 =M. Hence for each similarity querymt onM,
starting at t = 1, the closest feature vectors are retrieved
and corresponding frames are indexed with the same clus-
ter reference as mt. If a frame has already been assigned
to a cluster ci, then it is considered as classified and is not
processed subsequently. As Nt = ∅ or t = T , the recursive
training stops and topology class distributions P (ci) are es-
timated. Note that if τ is underestimated, then the dataset
will be overpartionned, but without any impact on the qual-
ity of the sequence reconstruction (cf. Figure 4).

Figure 4. Similarity matrix. The matrix shows the similarity com-
putation of 500 3D video frames. Dark and light colors denote
strong and weak similarities respectively. The blocks show suc-
cessive frames belonging to the same topology class. 220 clusters
were found with a threshold τ = 0.1.

4.2. Probabilistic graph structure

The structure of a video sequence can be designed as a
Markov network that models the video evolution between
different states (e.g. scene changes [12]). In our approach,
we propose to partition 3D videos of human models into
poses of different topology. We denote by N the number of
clusters in the sequence S = {s1, ..., sT }, Ni = card(ci)

the size of the ith cluster ci, and T =
∑N

i=1Ni the number
of frames in S. Let assume G = (C,E) is a weighted di-
rected graph, the set of vertices C = {c1, ..., cN} stands
for the topology-based shape descriptor clusters, and the
set of edges E = {eij}j∈[1,N ]

i∈[1,N ] stands for the chronologi-
cal transitions which connect every cluster (card(E) < N ).
P (ci) = Ni

T is the occurrence probability of a cluster ci,
which weights the occurrences of a pose in S. The weight
wij is associated to the edge eij 6= ∅ and models the tran-
sition probability between the two states ci and cj . wij is
defined as the conditional probability

P (cj |ci) =
∑

(sp,sq)∈ci×cj δ(q − p)∑
(sp,sq)∈ci×C\ci δ(q − p)

, (5)

where sp is the pth frame of S and δ(x) =
{

1 if x = 1
0 else .

The probability is normalized so that assuming Ni ⊂ C
is the set of adjacent clusters in the neighborhood of ci,
Ni = {c ∈ C \ ci|∃(sp, sq) ∈ ci × c, q − p = 1}, then∑

cj∈Ni
P (cj |ci) = 1. The evolution of the model shape

can be analyzed along S using the graph G (cf. Figure 5).
As well, the structure allows to design new sequences by
navigating through the graph.

Figure 5. Probabilistic graph structure. The sequence is repre-
sented as a Markov network. It models transitions between the
different states and allows to analyze the sequence content. For
example, cycles stand for redundant poses.

4.3. Semantic description

Human models have an articulated body with constraints
and a finite number of positions. In order to achieve au-
tomatic semantic description of 3D video sequences, train-
ing data models are depicted by semantic annotations (e.g.
“stand up, hands on hips”, “stand up, hands joined over the



head, head looking the hands”, etc.). Any additional pose
with annotations can be learned and indexed in the dictio-
nary. Hence similar poses of a model can be retrieved in
3D videos by queries on shape and/or semantic (cf. Fig-
ure 6). In our framework, 20 poses of yoga and from various
sources where annotated for 3D action recognition purpose.

Figure 6. Training data with annotations. Any human poses with
annotations can be learned and indexed in the topology dictionary
(e.g. 3D models found on the web).

5. 3D video skimming and description
3D videos contain slow motions, long poses and repet-

itive actions. We propose to use topology information to
identify the poses and efficiently encode the sequences. We
take advantage of the Markovian dictionary structure to per-
form 3D video skimming by probabilistic discrimination of
frames. In addition automatic semantic description and 3D
action recognition is made possible with annotated training
data.

5.1. Content-based encoding

We propose a linear process to compactly encode 3D
video sequences. Assuming the sequence S = {s1, ..., sT },
a keyframe ki is created for every cluster ci ⊂ S . ki con-
tains one graph structure with a textured submesh associ-
ated to each node, and the coordinates of all the graph nodes
of the frames {s ∈ ci}. Indeed each keyframe encodes a
specific pose of the model and its variants with respect to
similarity constraints. If a visited frame st does not belong
to the same cluster ci−1 as the previous frame st−1, then a
new keyframe ki is created. If st belongs to the same clus-
ter ci−1 as st−1, then only the graph node coordinates of the
model at t are encoded into ki−1. Thus it is possible to re-
cover the node transformations between consecutive frames
and reconstruct the mesh sequence without topology match-
ing issues. Let m be the size of an encoded mesh with a
Reeb graph structure, and g be the size of an encoded set of
node positions, then the size of the compressed sequence is
σ ' m ∗N + g ∗ T .

To further compress the sequence, our strategy is to iden-
tify and skip isolated and redundant patterns using the dic-
tionary properties. First, the cluster set C is sorted with

respect to the weights P (ci) in order to find the frames be-
longing to clusters having the highest and lowest probabili-
ties. Then:
- if P (ci) � 0, then ci may either contain: (1) a long se-
quence of successive frames representing a long pose with
slow or low variations which can be shorten by skipping
intermediate frames (e.g. frames #370 to #430 in Fig-
ure 4), or (2) a recurrent pose modeled as a cycle junction
node in the graph G. Frames are identified by repetitive
sequences in the sequence timeline. Each cycle L ⊂ C is
weighted according to its size S(L) =

∑
c∈L P (c)

card{c∈L} and rele-
vance P (L) =

∏
eij∈L P (ci|cj). Cycles are removed from

G according to S(L) and P (L).
Indeed if P (ci|cj) = 0, then ci and cj are disjoint (eij = ∅),
ifP (ci|cj) = 1, then the state space of the transition from cj
is reduced to the singleton {ci}, and else if P (ci|cj) ∈]0, 1[,
then cj is a cycle junction node.
- if P (ci) � 1, then ci contains few frames. We identify
isolated patterns and reclassify the frames into an adjacent
cluster (e.g. in the sequence {ci, ci, cj , ci, ci}, {s ∈ cj} are
reclassified in ci).
Hence content-based skimming can be processed iteratively
until a threshold on the compression rate is reached. Note
that skimming small cycles is equivalent to skip short ac-
tions.

5.2. 3D action recognition

The encoding of new frames is processed as a mapping
problem. A classifier assigns a topology class (or cluster)
to new unclassified feature vectors. The process relies on
the Markov network of the learned dictionary G = (C,E)
and the multiresolution Reeb graph matching scheme. As a
new frame sT+1 is added to the sequence S = {s1, ..., sT },
a cascade of classifiers ordered by relevance of probabil-
ity is built from the cluster weights. Let assume sT be-
longs to the cluster ci ⊂ C, and let denote the sets of
adjacent clusters N+(ci) = {c ∈ C|P (c|ci) > 0}, and
N−(ci) = {c ∈ C|P (ci|c) > 0}. sT+1 is successively
compared to: (1) ci, (2) {c ∈ N+(ci)} starting with higher
probabilities P (c|ci), and (3) {c ∈ N−(ci)} starting with
higher probabilities P (ci|c). At each step, the similarity of
sT+1 is evaluated against a model sc (the keyframe) belong-
ing to the visited cluster c. The search of c is performed un-
til a match is found, as SIM(sc, sT+1) < τ (cf. Eq.(2) and
Figure 7). Annotations associated to c are then displayed
to the user (i.e. the action is recognized). If no positive
classification has occurred after the step (3), a new cluster
containing sT+1 is created and linked to ci. Alternatively,
the search space can be extended to the neighbors of the
visited clusters and so on recursively. As well, a depth of
search can be set in order to limit the number of classifiers.
Note that each similarity evaluation is achieved using a mul-



tiresolution matching scheme. Hence unsimilar shapes are
quickly rejected and the mapping process is not particularly
time-consuming.

Figure 7. Mapping with a cascade of classifiers. A cascade of
classifiers ordered by relevance weights is built as a new frame is
added to the sequence.

5.3. Sequence reconstruction

The 3D video reconstruction from compressed frames
relies on a mesh skinning technique where Reeb graphs
serve as skeletons and submeshes are associated to each
node. As models of a same class have the same topology
which is represented by a unique skeleton, topology change
issues are avoided during the skinning process [24]. An ini-
tial meshMi is assigned to each cluster ci as a keyframe (cf.
Section 5.1), and every 3D video frame belonging to ci is re-
constructed by deforming Mi according to recovered node
transformations. By measuring 3D position distorsions on a
400×400×400 voxel grid (corresponding to a 2m×2m×2m
volume at resolution 5mm), we obtain MSE ∼ 0.005 and
PSNR ∼ 75dB, which stand for the mean squared er-
ror and the peak signal-to-noise ratio respectively. In our
experiments the implementation of the reconstruction step
was not optimized. However due to the video rate (25fps),
no major reconstruction artifacts were noticed.
Note that intraclass interpolations of graph node coordi-
nates are necessary during the reconstruction process to en-
sure smooth transitions as frames are dropped during the
skimming process. Fortunately this step is straightforward
(e.g. using quaternions and spherical linear interpolations
to compute transformations).

6. Experimental results
To evaluate the performance of our approach, we have

tested our algorithm on real 3D video sequences. In par-
ticular, this paper is illustrated with yoga sequences. This
dataset is interesting and challenging as it consists in suc-
cession of various complex human poses. The model turns
several times during a session, making action recognition
from a single viewpoint very limited. In this case, 3D shape
understanding can be efficiently performed by topology de-
scription. The sequences contain 7500 frames acquired by
a set of multiple video cameras at 25fps. Every frame con-
tains a 3D mesh of 30000 triangles with texture. Hence an

uncompressed frame encoded in standard (ASCII) format
requires 1.5Mb, which means 11.25Gb for 7500 frames.
Feature vectors were computed on a Core2Duo 3.0GHz
4Gb RAM, nevertheless it requires less than 512Mb RAM.
The current unoptimized implementation in C++ takes 15s
to generate a feature vector at resolution level R = 4. Ef-
ficient computation of Reeb graphs can be found in the lit-
erature (e.g. [13]). The similarity computation between two
models takes 10ms. Although our algorithm contains sev-
eral independent steps, it has been fully automatized.
Topology dictionary stability. The core of our approach
relies on the ability of the dictionary to discriminate shape
topology. In particular, the definition of the Morse function
and the similarity measure are crucial (cf. Section 3). The
sensitivity of the dictionary has been evaluated against dif-
ferent Morse functions and different resolutions R of Reeb
graphs (cf. Figure 8). The integral geodesic function with
R = 4 has shown the best trade-off between clustering per-
formance (quality) and computation time. Different formu-
lations of the similarity measure SIM have been tested.
For example without summation of coarser resolution con-
tributions (cf. geodesic r = 4 on Figure 8). As well, the
clustering power of the topology descriptor depends on the
threshold τ ∈ [0, 1] (as any models which similarity score is
smaller than τ belong to the same topology class). We have
observed similar behavior of the dataset clustering with re-
spect to τ using sequences of different lengths (cf. Fig-
ure 9). This helps to set τ and check the validity of training
datasets. By experience, dataset of human models are well
clustered with τ = 0.1.

Figure 8. Comparison of different similarity measures for the
clustering of 500 frames with respect to τ .

3D video compression and skimming. An uncom-
pressed sequence size is growing linearly of 1.5Mb per
frame (11,250Mb for 7500 frames). Hence it becomes very
difficult to search for specific information or navigate in
long sequences. As presented in Section 5.1, our 3D video
encoding process consists in two steps. First, long poses,
slow motions and variations belonging to the same topol-
ogy class are automatically located using the weights of the



Figure 9. Clustering of 7500 frames with respect to τ .

dictionary clusters, and then efficiently compressed. The
topology-based compression step achieves a compression
ratio of 2:1, meaning a saving space of 50% (cf. Fig-
ure 10). The 7500 frame sequence has been reduced to
3660 encoded frames and 1749 clusters were found. Intr-
aclass reconstruction ensures accurate recovery of the se-
quence. Second, using the dictionary graph structure, 656
cycle junction nodes have been identified (cf. Figure 11).
The skimming of short actions (< 2s) produces a 3D video
sequence of 2716 encoded frames, which is equivalent to a
compression ratio of 3:1 and a saving space of 66%. An-
other possible skimming scheme consists in successively
skipping the biggest cycles. It returns a sequence of 1439
encoded frames (the ratio is 5:1 and a saving space of 80%).
Intraclass interpolations ensure seamless frame transitions.
Indeed the sequence can be automatically or progressively
reduced while keeping relevant information. Appropriate
file size, poses to keep or to skip can be chosen.

Figure 10. Content-based compression and skimming gain.

3D action recognition. Automatic 3D video description
and 3D action recognition of new frames are performed us-
ing the topology dictionary (cf. Figure 12).

7. Conclusion
The contributions of this paper consist in the introduction

of a topology dictionary with Markov model to perform 3D

video content-based compression, skimming, and 3D ac-
tion recognition. A 3D video consists in a stream of 3D
models. Long sequences require several gigabytes of disk
space, and the navigation and information retrieval in huge
datasets are intractable. Hence we propose to use a topol-
ogy dictionary to reduce the storage cost of 3D videos while
keeping relevant information. As a matter of fact, slow mo-
tions and repetitive poses occur frequently in sequences of
humans in action. Topology description has shown its ro-
bustness to extract similar patterns. Thus the sequence can
be compactly encoded with pattern references. In addition,
the 3D video sequence is modeled by a weighted graph hav-
ing Markovian property. The skimming of 3D video is then
possible by probabilistic discrimination of frames. We show
results for seamless skimmed videos with compression ra-
tio up to 5:1, meaning a saving space of 80%. Furthermore
the dictionary features learned annotated poses, allowing to
perform automatic semantic description of videos and 3D
action recognition of forthcoming frames. We believe the
topology dictionary will bring lots of perspectives to future
3D video research and applications.
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