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Abstract. This paper presents a new multimodal system for group dy-
namics and interaction analysis. The framework is composed of a mic
array and multiview video cameras placed on a digital signage display
which serves as a support for interaction. We show that visual informa-
tion processing can be used to localize nonverbal communication events
and synchronized with audio information. Our contribution is twofold: 1)
we present a scalable portable system for multiple people multimodal in-
teraction sensing, and 2) we propose a general framework to model A/V
multimodal interaction that employs speaker diarization for audio pro-
cessing and hybrid dynamical systems (HDS) for video processing. HDS
are used to represent communication dynamics between multiple people
by capturing the characteristics of temporal structures in head motions.
Experimental results show real-world situations of group communica-
tion processing for joint attention estimation. We believe the proposed
framework is very promising for further research.

1 Introduction

Over the last decades electronic displays have become ubiquitous and have par-
ticipated in many everyday life activities. Digital advertising displays, video
games or poster presentations trigger group discussions which generally contain
lots of interactions, and therefore lots of information on human communica-
tion and behavior. Here, we present a novel multimodal system to capture and
analyze multiple people dynamics and interaction. The system detects and recog-
nizes verbal and non-verbal communication signals, and returns human readable
feedbacks on a display screen. Visual information processing is used to detect
communication events that are synchronized with audio information (e.g., head
motion and speech). The system could potentially be adapted for various appli-
cations such as entertainment (multiplayer interactive gaming device), education
or edutainment (virtual support for lecturer), medicine, etc.

Multimodal Audio/Video systems designed for human behavior and interac-
tion analysis usually consist of multiple video cameras and microphones placed
in a dedicated room, and oriented towards the participants. To date, these sys-
tems are still very tedious to setup and often require wearable equipments that



2 Tony Tung et al.

Fig. 1. Smart digital signage tested during poster presentation for group dynamics and
multimodal interaction analysis.

prevent them to be used casually or in an uncontrolled environment. Hence,
we propose a scalable portable system (i.e., all the devices are transportable
while their number can be increased) that employs state-of-the-art techniques
in graphics (GPU), vision, and speech processing for multimodal interaction
sensing and analysis. Non-verbal signals from head motions are identified and
correlated with speech data, and their dynamics are modeled using hybrid dy-
namical systems (HDS). We show that HDS can be used to obtain temporal
structures (i.e., duration, overlaps, etc.) of multimodal events for interaction
analysis. The current system has been setup for multiple subjects interacting in
front of a large digital display at a short distance, out of the range of consumer
depth cameras (see Fig. 1). Real poster presentations as well as casual discussions
were captured using the system for joint attention estimation. The next sections
present related work, a description of the framework, A/V multimodal interac-
tion modeling using speaker diarization and hybrid linear dynamical systems,
experimental results, and a conclusion about our contribution.

2 Related work

Interaction modeling has been a very attractive research topic since decades
due to its multidisciplinary aspect. For example, human-to-human and human-
computer interaction have been studied in numerous fields of science such as
psychology [1], computer graphics [2], communication [3, 4], etc. In group com-
munication, humans use visual and audio cues to convey and exchange infor-
mation. Hence video and audio data have been naturally extensively used to
study human behavior in communication. For example, several corpus such as
VACE [5], AMI [6], Mission Survival [7], IMADE [8] were created to capture
multimodal signals in multi-party conversation and interaction. Speech is often
used to detect dominant speakers based on turn-taking and behavior analysis,
while non-verbal cues provide feedbacks to understand communication patterns
and behavior subtleties (e.g., smile, head nodding or gaze direction change) and
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can be used as back-channels to improve communication [9]. Nevertheless heavy
equipments (e.g., headsets) are often required, visual information processing is
usually limited (due to video resolution), and no solution is given for automatic
multimodal information analysis.

As shown in the literature, the Hidden Markov Models (HMM) are very
popular for speech and gesture modeling and recognition [10, 11]. However, lim-
itations lie in the lack of flexibility for timing structure manipulation (e.g., du-
ration of states and transitions), which makes the modeling of some real-world
events impractical, whereas event dynamics can be crucial to characterize hu-
man communication mechanisms. Hence, we propose to use linear dynamical
systems (LDS) to model communication event dynamics. LDS have been ap-
plied for dynamic texture modeling [12], facial movement synchronization [13],
human action recognition [14], etc. In our framework, we use hybrid dynami-
cal systems (HDS) to model nonverbal behaviors which are synchronized with
speech.

To our knowledge no similar framework has been proposed in the literature
that aims at multi-people interaction modeling using multimodal (audio and
video) signals to study human behavior in group communication (e.g., to detect
and analyze joint attention of audience). Other systems using digital signage, like
the moodmeter from MIT, usually require only one video camera that performs
only face detection/classification. Audio is not used and they do not consider
human-human interaction. Commercial systems, like Samsung Smart TVs, use
single-human gestures as remote control and do not handle interaction between
multiple people.

3 Multimodal sensing framework

3.1 Audio/Video system setting

Audio. We employ a hands-free speech communication setup in the capture
environment to give subjects more degrees of freedom in interacting with each
other. This setup precludes holding or wearing a physical microphone. Although
signal-to-noise (SNR) ratio is significantly lower in the hands-free setup as com-
pared to the close-distant talking microphones, we mitigate this issue by using a
microphone array. The increase in microphone count results in an improvement
of the SNR. In our setup, we use 19-channel microphone array in a linear con-
figuration attached on top of a 65-inch digital display (see Fig 1). Each signal
from the microphone is sampled with 16KHz sampling rate, which is sufficient
to cover the frequency band of the speech signal.

Video. Multiple video cameras are employed to capture nonverbal communica-
tion and interaction between multiple people. 6 HD video cameras are placed
on a pole mounted on the display to obtain wide field of view (270 deg) and
dense 3D face reconstruction. To keep the design simple, only one PC with a
single GPU is used for video capture and processing. Videos are recorded simul-
taneously in SXGA at 15fps using Point Grey 1394b cameras with wide angle
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3.5mm lenses. Note that to date, hardware synchronization of HR cameras with
standard depth cameras is still not possible.

3.2 Multimodal signal capture

Audio. Aside from mere convenience, hands-free speech communication through
microphone array offers meaningful signal processing tools. Data from the differ-
ent channels can be processed to suppress contaminants emanating from noisy
sources in real environment condition through beamforming [15]. Moreover, mi-
crophone array processing can also be used to effectively focus the microphone
sensitivity to the party of interest, and further enhance the speech signal. This
minimizes cross talk from the other speech sources or unwanted noise coming
from the environment. Then, nonlinear processing technique is introduced in
which the speech from other sources (other than that of the party of interest)
is transformed to noise [16]. For example, in a poster presentation scenario, the
party of interest is either the presenter or the audience, thus we transform either
one of these to noise and enhance the other. As a result, the processed audio
stream contains both the enhanced speech of the party of interest and noise
(transformed speech).

Video. The proposed system detects and tracks multiple people faces from mul-
tiple views. As we use HD cameras, appearance-based methods return reliable
detection results [17]. Face detection is combined with face feature detection
(e.g., nose) for the sake of robustness, and computed on GPU to speed up cal-
culations. To achieve simultaneous detections from multiple views with a single
GPU, we first build a composite image by concatenation of regions of inter-
ests from multiview frames, and then transfer the image to the GPU; e.g., a
consumer graphics card (GeForce NVIDIA GTX) can easily handles 3 frames si-
multaneously in real-time. Our face tracker employs a Bayesian model and online
learning for continuous tracking [18]. Here, face feature coordinates, face tem-
plates, detection scores, and depth distributions are used as priors to estimate
posterior probabilities of face positions. Dense 3D face reconstruction from stereo
and point cloud noise removal using spatio-temporal joint bilateral filtering are
also computed online (see Fig.2). Head pose can therefore be estimated by a
geometrical approach (model fitting) to derive head motion and gaze direction.
See Fig. 3 (bottom) for an overview of the process.

4 Multimodal interaction dynamics

Temporal structures in speech and head motion play a crucial role in natural
human communication. While speech processing from audio data allows speaker
turn diarization, dynamic features from visual information processing can be
modeled using an interval-based representation of hybrid dynamical systems
(IHDS) that model human communication event dynamics [13]. The proposed
strategy allows the identification of behavior patterns in multimodal interaction
such as when joint attention occurs (see Fig. 3).
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Fig. 2. Video processing: (Left) Real-time depth map from stereo; (Center and Right)
multi-people face detection, tracking, and 3D face for head pose estimation.

4.1 Speaker diarization

Diarization of speaker turns involves classifying one speaker from the other:
e.g. in the case of a poster presentation, identifying the presenter-audience turn.
When considering speech as the mode of input in the diarization task, the perfor-
mance of the system primarily depends on separating the presenter’s speech from
that of the audience. However, separation is not straightforward since speech it-
self shares a common subspace even when spoken by different people. This is the
reason why speech recognition technology is usually speaker-independent (e.g.
speech from different people can still be recognized even if not enrolled during
training). Thus, the technique in the microphone array processing circumvents
this problem by treating the speech-speech classification approach into speech-
noise classification.

We note that speech and noise subspaces are distinct, which minimizes clas-
sication ambiguity. In our framework, we design two Gaussian mixture model
(GMM) classiers (e.g., λS for speech and λN for noise). Depending on the size of
the training data, Gaussian components are increased to improve subspace dis-
crimination. This process is terminated when the classification accuracy reaches
the saturation value. Specically, we use 256 Gaussian components for each model.
The two GMMs are trained by means of Expectation-Maximization [19]. The
microphone array-processed data is windowed using a 25-ms frame. Then, mel
cepstrum, energy and delta energy features are extracted, which are used in
the training phase. These features suciently capture the relevant speech infor-
mation with reduced dimensionality. In the actual diarization scheme shown
inFig. 3 (top), identication of the speaker turn is implemented by processing the
19-channel mic array signals resulting to x̄. The processed data contain the en-
hanced speech (party of interest) and noise (unwanted party). Then, likelihood
score is evaluated using the mic array-processed stream against the 2 GMMs (λS
and λN ). Finally, the GMM that results to a higher likelihood score is selected
as the corresponding class.
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Fig. 3. Processing scheme for multimodal interaction analysis.

4.2 Hybrid linear dynamical system

Definition. A hybrid linear dynamical system (HDS) integrates both dynami-
cal and discrete-event systems. Dynamical systems are described by differential
equations and are suitable for modeling smooth and continuous physical phe-
nomena, while discrete-event systems usually describe discontinuous changes in
physical phenomena and in subjective or intellectual activities.

Assuming a signal can be discretized in atomic entities (or dynamic prim-
itives), then any complex human behavior can be modeled by: (1) a set of N
linear dynamical systems (LDS) D = (D1 . . . DN ), and (2) a finite state machine
(FSM) that represents states and state transitions. Let us denote a temporal
sequence of an observed signal Y = {y(t)}t=1...T , y(t) ∈ Rm, and its hidden
states X = {x(t)}t=1...T , x(t) ∈ Rn belonging to a continuous state space. Di

can then be defined as: {
x(t+ 1) = Fix(t) + gi + vi(t)
y(t) = Hx(t) + w(t),

(1)

where Fi ∈ Rn×n is the state transition matrix which models the dynamics of
Di, gi is a bias vector and H ∈ Rm×n is the observation matrix which maps the
hidden states to the output of the system by linear projection. vi(t) ∼ N (0, Qi)
and w(t) ∼ N (0, R) are process and measurement noises modeled as Gaussian
distributions with null averages and Qi and R as covariances respectively. In
order to control the system state changes between two events, an FSM having a
discrete set of states S = {si}i=1...N is coupled to D, where each si corresponds
to an LDS Di. The number N of LDS and their parameters {θ} can be estimated
by clustering of LDS and optimization of {θ} by Expectation-Maximization [13].

Interval representation. Interval-based representation of HDS (IHDS) is used
to describe event timing structures (see Fig. 3 (bottom)) and can be used for
event classification or recognition [13]. Let us denote Ik =< si, τj > an interval
identified by a state (or mode) si ∈ S and a duration τj = ek− bk, where bk and
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ek are the starting and ending time of Ik respectively. Complex human behavior
can then be modeled using an IHDS, similar to a musical score where {Ik} are
notes and N is the scale. As si, and thus Di, is activated a sequence of continu-
ous states can be generated from {x(t)} and mapped to the output observation
space as {y(t)}.

Interaction analysis. Let us define an interaction event as an action-reaction
pair. Particularly, the interaction level between multimodal signals can then be
defined by the number of occurrences of synchronized events that happen within
a delay (i.e., reaction time), and can characterize reactivity. Synchronized events
can be identified by computing temporal differences between the beginning and
ending of each interval. Hence, signal synchronization Z of two signals Yk and Yk′

can then be estimated by identifying all overlapping intervals (i.e., synchronized
events) in the signal I = {(Ik, Ik′) : [bk, ek] ∩ [bk′ , ek′ ] 6= ∅}, and by considering
the following distribution:

Z(Yk, Yk′) = Pr({bk−b′k = ∆b, ek−ek′ = ∆e}I |{[bk, ek]∩ [bk′ , ek′ ] 6= ∅}I ]), (2)

The distribution can be modeled as a 2D Gaussian centered in Z0 =
∑
∆(Ik,Ik′ )
Nkk′

,

where Nkk′ is the number of overlapping intervals in I and ∆(Ik, Ik′) = ((bk −
bk′), (ek−ek′)) is the temporal difference between Ik and Ik′ . Z contains informa-
tion about reactivity with respect to reaction time (especially where |bk− bk′ | <
1s). If {(bk − bk′) → 0} and {(ek − ek′) → 0}, then all pairs of overlapping
intervals are synchronized.

5 Experimental results

To assess the performance of our framework, the setup was tested in real-world
situations such as a conference hall and a meeting room. Despite fairly cluttered
backgrounds and various illumination conditions, the system was effective and
poster presentations as well as casual discussions between 3-4 people were held to
evaluate joint attention of subjects from multimodal event interaction analysis
(see Fig. 1,2). Audio and multiview video are captured simultaneously, and an
offline process outputs multimodal interaction levels within seconds.

In Figure 4, we show the results obtained with two sequences with some
ground-truth hand-made annotations : a) a poster presentation involving a pre-
senter and 2-people audience (2000 frames), and b) a casual discussion between 3
subjects commenting photos displayed on the screen (2500 frames). Head motion
dynamics were modeled using HDS from head positions (x, y) (see plots). We
show interval-based representations of HDS model states (IHDS) with N = 4
modes. Here, state changes correspond to head motions (e.g., turning, nodding,
etc.). Presenter in a) and Subject 1 in b) who were closer to the display did
numerous head movements towards the screen and other subjects (26.5/min v
32.3/min). In a) Audience 2 produced much more nonverbal communication sig-
nals than Audience 1 (32/min v 19.5/min), whereas in b) Subject 2 and Subject



8 Tony Tung et al.

a) Poster presentation

b) Casual discussion

Fig. 4. Group dynamics and multimodal interaction modeling for: a) Poster presenta-
tion and b) Casual discussion. From the top: head position (x, y) in pixels, IHDS model-
ing with 4 modes, and speaker diarization (red: idle, blue: speech, green: nod/ok/laugh).
Right: IHDS synchronization distributions.

3 performed similarly (25.3/min v 27.3/min). As can be observed, interactions
between participants were more frequent during the casual discussion in b). Also,
face tracking of Audience 1 in a) was lost around frame 1200 during the process-
ing due an implementation issue. Nevertheless the unexpected tracking behavior
has been successfully identified as a separate state by the HDS model.

Signal synchronizations (see right in a) and b)) show all synchronized interval
disparities between Presenter and Audience 1 and 2, and between Subject 1
and Subject 2 and 3 respectively. The temporal difference distributions have a
maximum |∆b| and |∆e| of 60f (4s). The centers of the distributions are close to
the center (red circle), meaning mere synchronization. Note that in the context
of poster presentation, the position of the subjects does not change a lot. Hence,
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we could consider global head motions without cancelling the body motions.
Therefore, reactions to signals from the head include as well reactions from
body motions (e.g., body translation can create reaction).

In both scenarios, one participant is more active than the others: the Presen-
ter in a) with 62.5% of speech, and the Subject 1 in b) with 73.5%. (Audience
1 and 2 have 3.1% and 9.4% of speech respectively, and Subjects 2 and 3 have
14.2% and 12.3.) Hence, we propose to use Eq. 4.2 to evaluate joint attention of
the other participants by analyzing multimodal interactions and measuring in-
teraction levels. Figure 5 shows interaction levels between the main speaker and
each participants, i.e., the number of reactions with respect to reaction time.
In a) and b), we show: (Left) head reactions in response to audio stimuli for
all participants (main speaker included), and (Right) head reactions of partic-
ipants other that the main speaker in response to visual stimuli from him. In
a), we can see again that Audience 2 has much more reactions than Audience
1 for both audio and visual stimuli. More reactions are found with the visual
stimuli: Audience 2 (46 reactions per minute) v Audience 1 (33rpm), The audio
stimuli return: Audience 2 (8rpm) v Audience 1 (5rpm). In b), the number of
reactions are similar, showing equal interaction level between Subject 2 and 3.
Audio: 13rpm v 11rpm, and video: 83rpm v 87rpm. As human reaction time to
audio and visual stimuli is usually below 1s (15 frames), the level of attention
of each participant can be derived by the behavior of the curves near the origin.
Interestingly we can observe that reaction times of Audience 2 and Subject 2
are very good, which is reconfirmed by checking the videos.

Fig. 5. Multimodal interaction level with respect to reaction time: a) Poster presenta-
tion, and b) Casual discussion.

6 Conclusion

This paper presents a new framework for group dynamics and multimodal inter-
action modeling. The proposed system is portable and scalable and consists of
a smart digital signage display equipped with a mic array and multiview video
cameras. We capture multiple human interaction events and analyze them auto-
matically using audio and visual information processing. We show that commu-
nication dynamics can be used to estimate joint attention using an interval-based
representation of hybrid dynamical systems and speaker turn diarization. To our
knowledge, no similar framework has been proposed yet.
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