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Abstract—This paper presents a novel multimodal system
designed for multi-party human-machine interaction understand-
ing. The design of human-computer interfaces for multiple users
is challenging because simultaneous processing of actions and
reactions have to be consistent. The proposed system consists of a
large display equipped with multiple sensing devices: microphone
array, HD video cameras, and depth sensors. Multiple users
positioned in front of the panel freely interact using voice or
gesture while looking at the displayed content, without wearing
any particular devices (such as motion capture sensors or head
mounted devices). Acoustic and visual information is captured
and processed jointly using established and state-of-the-art tech-
niques to obtain individual speech and gaze direction. Further-
more, a new framework is proposed to model A/V multimodal
interaction between verbal and nonverbal communication events.
Dynamics of audio signals obtained from speaker diarization
and head poses extracted from video images are modeled using
hybrid dynamical systems (HDS). We show that HDS temporal
structure characteristics can be used for multimodal interaction
level estimation, which is useful feedback that can help to improve
multi-party communication experience. Experimental results us-
ing synthetic and real-world datasets of group communication
such as poster presentations show the feasibility of the proposed
multimodal system.

Index Terms—human-machine system, multi-party interaction,
smart digital signage, multimodal interaction dynamics

I. INTRODUCTION

OVER the last decade smart systems for multi-party
human-machine interaction have become ubiquitous

in many everyday life activities. To date, multimodal Au-
dio/Video (A/V) systems designed for human behavior and
interaction analysis usually consist of multiple video cameras
and microphones placed in a dedicated room, and oriented
towards participants (see VACE [1], Mission Survival [2],
AMI [3], IMADE [4]). Numerous hours of discussions can
then be recorded for further offline analysis. Communication
signals from voice and gesture are usually processed by
speech and video techniques. However, these systems are still
very tedious to setup and often require wearable equipment
that prevent them to be used casually or in an uncontrolled
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Fig. 1. Smart digital signage for group dynamics analysis showcased at
the international conference IEEE ICASSP 2012. The system consists of a
large display and multiple sensing devices (e.g, microphone array, HD video
cameras, and depth sensors) that perform simultaneous captures. Multimodal
interaction dynamics are modeled using hybrid dynamical systems, and inter-
action level of participants are estimated using audio-visual event statistics.

environment. Moreover several steps such as video annotation
still often require hours of human manual labor.

Here, a novel multimodal system that is designed for multi-
party human-human interaction analysis is presented. The
system is scalable and portable, and employs established
and state-of-the-art techniques in speech [5], vision [6], and
graphics processing (GPU) for multiple-people multimodal
interaction data capture and analysis. It consists of a large
display equipped with multiple sensing devices spaced on
a portable structure: one microphone array, six HD video
cameras, and two depth sensors (see Fig. 1). Multiple users
standing in front of the panel can interact freely using voice
or gesture while looking at the displayed contents, without
wearing any particular device (such as motion capture sensors
or head mounted devices). Using audio and visual information
processing, the system detects and recognizes verbal and non-
verbal communication events from multiple users (e.g., voice
and head motions). The display is used to display information
and trigger group discussions. Furthermore, a new framework
is proposed to model A/V multimodal interaction between
verbal and nonverbal communication events. Dynamics of
audio signals obtained from speaker diarization and head
poses extracted from video frames are modeled using hybrid
dynamical systems (HDS) [7]. Thus, characteristics of state
temporal structure (i.e., duration, synchronization, delays, and
overlaps) can be used for interaction level analysis. In this
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work, it is assumed that a multi-party interaction event such
as joint attention or mutual gaze between two subjects occurs
when correlated actions and reactions can be observed (e.g.,
assertions and head nods or turns). In the context of poster
presentations, participants communicate close to each other,
empirically validated using real-world video datasets.

The multi-party communication experience can therefore
be improved by correcting speaker presentation, or catching
users’ interests by displaying specific contents. The system
was designed to perform head motion tracking and speaker
turn estimation, and was tested with real poster presenta-
tions as well as casual discussions. The rest of the paper
is organized as follows. The next section discusses related
work. Section III gives a description of the system framework.
Section IV details A/V multimodal data processing. Section V
presents multimodal interaction modeling using hybrid dy-
namical systems from verbal and nonverbal communication
events (e.g., speaker turns and head motions). Section VI
shows experimental results with applications to multi-party
interaction. Section VII concludes with a discussion on our
contributions.

II. RELATED WORK

In group communication, humans use visual and audio cues
to convey and exchange information. Video and audio data
have therefore been extensively used to study human behavior
in communication.

Speech is often used to detect dominant speakers based
on turn-taking and behavior analysis, while nonverbal cues
provide feedback to understand communication patterns and
behavior subtleties and can be used as back-channels to im-
prove communication [8], [9]. For example, several corpuses
such as VACE [1], Mission Survival [2], AMI [3], IMADE [4]
capture multimodal signals in multi-party conversation and
interaction, while related systems explored meeting summa-
rization applications and provide an efficient way of navigating
meeting content [10], [11]. Nevertheless heavy equipment
(e.g., headset or motion capture system) is also often required
to obtain accurate spatial measurements, as visual information
processing is usually limited by technology constraints (e.g.,
data size, video resolution). In the case of audio systems,
multiple microphones are actually needed to perform sound-
source separation. Depending on the environment condition, a
good quality system may be required to achieve better sound
quality performance. This involves increasing the number of
microphone sensors and using high quality microphones (see
details in Sect. III). Similar established sound processing
systems (i.e., microphone array processing, source separation,
and speech segmentation) are usually employed for robot
audition [12], [13]. Thus, the system proposed next uses non-
wearable sensors and established and state-of-the-art speech
and computer vision technology. It addresses real-world con-
ditions such as meeting rooms. Table I shows the number
of participants involved in the experiments (#Subjects), and
the evolution of sensor technology: number of cameras and
resolutions (#Cams), number of microphones (#Mics), use of
IR cameras and markers for motion capture (Mocap), and use
of depth sensors (Depth).

TABLE I
HARDWARE SETTING OF VARIOUS MULTIMODAL SYSTEMS.

Project #Subjects #Cams #Mics Mocap Depth
VACE [1] 8 10VGA+ 6+8 yes no
Misson S. [2] 4 8VGA 4+1 no no
AMI [3] 4 6VGA+ 24 no no
IMADE [4] 3 8VGA 4 yes no
[ours] 4 6UXGA 16 no yes

In the context of human-human interaction analysis, we are
particularly interested in trigger events and behaviors. Our
digital signage features a large display and can be used as
a smart poster for demonstration in open space or scientific
presentation at conferences (see Fig. 1). Other systems relying
on a large display, such as the MIT Mood Meter (2012),
usually utilize only one video camera for face detection and
classification purpose: acoustic information is not used and
human-human interaction is out of the scope. Commercial
systems, like Sony PlayStation with EyeToy (2003), Toshiba
gesture-controlled laptop Qosmio (2008), or Samsung Smart
TVs (2012), use single-human gestures as remote control and
do not handle interaction between multiple people.

Hidden Markov Models (HMM) are very popular for speech
and gesture modeling and recognition [14], [15]. However,
limitations lie in the lack of flexibility for timing structure
manipulation, which makes the modeling of some real-world
events impractical, whereas event dynamics can be crucial to
characterize human communication mechanisms. Hence, we
propose to use Linear Dynamical Systems (LDS) to model
communication event dynamics. In our framework, Hybrid Dy-
namical Systems (HDS) are used to model nonverbal behaviors
which are synchronized with speech information [7].

As extensions to [16], [17], this paper contains additional
details about the architecture, algorithms and models and
additional experimental results using synthesized datasets for
robustness assessments.

III. SMART MULTIMODAL SYSTEM CONFIGURATION

A. Audio system setting

To realize a hands-free system in which the participants
are not constrained to using close-talking microphone, a mi-
crophone array system is employed. Multiple microphones are
linearly aligned to enable multiple signal captures. Since there
are multiple sources involved (i.e., interacting participants),
individual signals of interests are derived through source sepa-
ration. Thus, multiple signals are converted into a single signal
(separated signal) belonging to either one of the participants.
This system also allows the suppression of unwanted noise as
it can steer its sensitivity through beamforming and ignore the
signal coming from the direction of a noise source. As a result,
participants can freely move away from the microphones. We
note that the speech recognizer is very sensitive to the drop in
SNR, and in such event, the system is vulnerable to noise con-
tamination which degrades speech recognition performance.
Thus, the use of a microphone array system supports a smooth
interaction experience. We use 19 microphone sensors in total
(Shure Lapel microphones) mounted on top of a 65-inch
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Fig. 2. a) Multimodal system setup for smart poster presentation. The system consists of one mic array, six HD video cameras, and two depth sensors to
capture presenter and audience. b) Video captures of one presenter and two attendees from six views.

display (see Fig. 2a). Audio capture is performed at 16kHz
sampling rate using RME HDSP audio capture device, and
RME Multichannel Mic-Preamps with AD conversion.

B. Visual system setting

Multiple video cameras are employed to capture nonverbal
communication events of multiple people standing in front of
a large display. Six HD video vision cameras (Point Grey
Grasshopper) are spaced on a portable structure made of
poles and mounted around the display. For poster presentation,
sensing devices are placed at one side of the display to capture
a presenter, and at the center to capture the audience. Partic-
ularly, three cameras with 3.5mm lenses are placed on top of
the display (two at the center, one on the side) to obtain a very
wide field-of-view (150 degrees) as the display is very large
and subjects are standing relatively close. Videos are captured
in UXGA at 30fps for archiving purpose, and 3D information
is recovered by multiview stereo techniques [6]. Additionally,
three cameras with 12mm lenses are placed below the display
(two at the center, one on the side) to capture closeup videos
in SVGA of users’ faces at 30fps. Furthermore, two consumer
RGB-D cameras (Microsoft Kinect) are placed on top of the
screen (one at the center, one on the side) to capture videos and
depth maps in VGA at 30fps. The whole equipment ensures
accurate and effective real-time 3D information capture of the
observed scene. As only one PC with a single GPU (and
three controller cards) is necessary for video capture and
processing, the system is easily transportable. The system has
been especially designed for capturing poster presentations,
and provides high-resolution videos from multiple viewpoints
that serve several purposes: visual tracking, 3D reconstruction,
and image annotation. While a single Kinect camera can only
capture up to two participants standing in front of a display,
our system can handle up to four participants using multiple
cameras.

Fig. 2 shows the current system and multiview video sam-
ples. Note that Fig. 1 shows the first prototype of the system
which does not include depth sensors: all cameras are spaced
on top of the display, and gaze directions are estimated from
head poses only.

IV. MULTIMODAL DATA PROCESSING

A. Speech processing

Acoustic signal processing in a multi-party system involves
the processing of data captured from the microphone array
and consists of two steps: 1) sound source separation, and 2)
speaker diarization. An additional step of Automatic Speech
Recognition (ASR) system can also be added.

1) Sound source separation: A source signal is observable
to all of the microphone sensors in the microphone array
system. Thus, processing is needed to effectively convert
the multiple signals into a single meaningful signal (sep-
arated signal) in which noise and other unwanted sources
are suppressed. Let us assume N sources (i.e., coming from
participants) and M (≥ N ) microphone sensors (in our case
M=19). Let us denote s(ω) as the input acoustic signal
of N sources in frequency domain, described as s(ω) =
[s1(ω), · · · , sN (ω)]T , where T represents the transpose op-
erator. The received signals in vector form are denoted as
o(ω) = [o1(ω), · · · , oM (ω)]T . The observed signal can be
modeled as follows:

o(ω) = A(ω)s(ω) + n(ω), (1)

where A(ω) ∈ CM×N is the Room Impulse Response (RIR)
in matrix form. The RIR describes the room characteristics
that governs the behavior of the sound signal as it is reflected
inside the room enclosure. The RIR can be measured by
transmitting a series of pulse sounds to the microphones
and estimating its response [18]. The background noise is
denoted by n(ω). Let us assume that n(ω) and s(ω) are
statistically independent and uncorrelated. This assumption
usually holds in real environment conditions when dealing
with simple types of noise contamination. The sound sources
are spatially separated using Geometrically constrained High-
order Decorrelation based Source Separation (GHDSS), which
is a byproduct of both beamforming and blind separation [19],
[20]. The separated signal is denoted as ŝ(l)(ω).

2) Speaker diarization: The problem involving speaker
diarization is based primarily on classifying the participants as
either a presenter or audience. Thus, in a continuous speech
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Fig. 3. Processing scheme for multimodal interaction analysis. Top) Audio processing. Bottom) Video processing.

interaction, it is equivalent to simply identifying the presenter-
audience turn. The speech signal is used as the modality
in the diarization task and the performance of the system
is very dependent on the speech separation quality of the
two participants (i.e., audience and presenter). In real-world
application, this is very difficult and separation is usually not
perfect since speech itself is similar even when spoken by
different people. In this work, we circumvent this problem by
treating the speech-speech classification approach as speech-
noise classification.

For improved classification, two classes must be distinct and
fortunately, speech and noise are different types of signals.
This property helps to minimize classification ambiguity. Two
Gaussian Mixture Model (GMM) classifiers are designed (e.g.,
λS for speech and λN for noise). Depending on the size of the
training dataset, the number of Gaussian mixture components
are increased to improve signal discrimination. In our system,
a total of 256 Gaussian mixture components are used for each
model and the training of the two GMM classes is based on
the Expectation-Maximization algorithm [5]. The microphone
array-processed data is windowed using a 25ms frame. Then,
mel-cepstrum, energy and delta energy features are extracted,
and are used in the training phase.

In the actual diarization scheme shown in Fig. 3 (top),
identification of the speaker turn is implemented by processing
the 19-channel mic array signals resulting in x̄ which is the
separated single channel speech. Processed data contain en-
hanced speech (party of interest) and noise (unwanted party).
Then, the likelihood score is evaluated using the enhanced
speech stream against the 2 GMMs (λS and λN ). Finally,
the GMM that results in a higher likelihood score is selected
as the corresponding class. While the conventional method
only involves GMM classification (i.e., model-based only),
we introduce an additional smoothing scheme after the classi-
fication procedure to improve signal discrimination between
the participants during the microphone array processing at
runtime. A smoothing mechanism similar to [21] is employed.
The goal is to filter out erratic classification results (i.e., rapid
classification changes within a small interval of time). This is
based on the observation that audience-presenter switching is

not likely possible within a short-time frame. Classification
performance can therefore be improved experimentally by
setting smoothing factors with respect to the distance to the
microphone array.

3) Context and Models for ASR: In order to perform
automatic speech recognition (ASR), a speaker-independent
acoustic model can be trained. This approach is actually used
in systems for robot audition [22], [23]. In particular, if a
system is designed for poster presentation, participants are
either classified as presenter or audience. Thus, at the onset
of the design process, this information should be known in
advance. Fortunately, this information is initially given; the
presenter usually talks about the content of the presenta-
tion displayed on the digital signage. This can be used for
adapting a language model for ASR. The audience is also
presumed to ask questions. Because of this prior information,
we can assume that the conversation dynamics between the
participants are readily available. Consequently, depending on
the directivity of the speaker, the acoustic model can be re-
trained to λ(l) with data processed using the sound separation
mechanism discussed above.

B. Multi-view video and depth processing

Visual information processing is achieved using a com-
bination of multiple video cameras that capture the scene
in high resolution (UXGA and SVGA) and depth sensors
that deliver depth maps of the scene in VGA resolution. All
multiview video cameras are geometrically calibrated using
standard methods (i.e., with a chessboard) and synchronized
by software trigger [6]. The depth sensors (IR cameras) are
also calibrated with the HD video cameras. Depth data serves
for human body-part identification and is performed using
discriminative random forests that efficiently label different
body regions [24]. Additionally, face tracking in video frames
is performed using a detection-based tracker [25] relying on
a cascade of weak classifiers [26], and face feature tracking
and head pose (yaw, pitch, roll angles) are obtained from
RGB-D data using Active Appearance Models with online
learning [27] and regression models [28]. As the resolution
of color cameras integrated in current consumer depth sensors
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is usually too poor to provide accurate gaze estimation and
close range field-of-view is too limited, HD video cameras
placed below the screen are used instead for accurate gaze
direction estimation [29], [30]. In practice as shown in Fig. 4,
regions of interest (e.g., faces, mouth and eyes) are extracted,
and HD video frames are registered to depth maps.

Fig. 4. a) Depth map from frontal depth sensor. b) Face feature tracking
using depth and color information (using Kinect SDK).

Compared to prior multimodal setup [16] (see Sect. II),
the proposed design is able to provide more accurate head
pose and potentially gaze estimation based on eye detection.
Note that, as in [16], HD video cameras placed on top of
the screen provide depth maps in real-time (using multiview
stereo reconstruction) [6], which can be merged with data from
RGB-D sensors to leverage 3D information estimation [31].
Furthermore, head and mouth positions are used in the speech
processing described below for better diarization. Thus, by
processing visual information the system returns temporal
sequences of communication events (such as head turning
and nodding) that can be correlated with temporal information
from speech data.

V. MULTIMODAL INTERACTION DYNAMICS

Temporal structures in speech and head motion play a cru-
cial role in natural human communication. To date, hand-made
annotations are still widely used for video analysis purpose,
although extremely time consuming [32]. However, speech
processing from audio data allows speaker turn diarization,
and feature dynamics from visual information processing can
model human communication event dynamics [7]. As shown
in Fig. 3, a new model is proposed for automatic identification
of repetitive behavioral patterns in multi-party multimodal
interaction (e.g., such as when joint attention occurs), by
exploiting timing structures (e.g., duration, synchronization,
delays, and overlaps) of multimodal event dynamics.

A. Event dynamics modeling

1) Definition: A hybrid linear dynamical system (HDS)
integrates both dynamical and discrete-event systems. Dy-
namical systems are described by differential equations and
are suitable for modeling smooth and continuous physical
phenomena, while discrete-event systems usually describe dis-
continuous changes in physical phenomena and in subjective
or intellectual activities [7].

Assuming an observed signal (e.g., audio or video) can
be discretized in atomic entities (i.e., dynamic primitives),

then any (verbal or nonverbal communication) event can be
modeled by: (1) a set of N linear dynamical systems (LDS)
D = (D1 . . . DN ), and (2) a finite state machine (FSM)
that represents states and state transitions. Let us denote a
temporal sequence of an observed signal Y = {y(t)}t=1...T ,
y(t) ∈ Rm, and its hidden states X = {x(t)}t=1...T ,
x(t) ∈ Rn belonging to a continuous state space. Di can
then be defined as:{

x(t+ 1) = Fix(t) + gi + vi(t)
y(t) = Hx(t) + w(t),

(2)

where Fi ∈ Rn×n is the state transition matrix which models
the dynamics of Di, gi is a bias vector and H ∈ Rm×n is the
observation matrix which maps the hidden states to the output
of the system by linear projection. vi(t) ∼ N (0, Qi) and
w(t) ∼ N (0, R) are process and measurement noises modeled
as Gaussian distributions with zero mean and covariances Qi

and R respectively. Particularly (Fi, H) ∈ GL(n)×ST(m,n),
where GL(n) is the group of invertible matrices of size n, and
ST(m,n) is the Stiefel manifold. Eq. 2 is known for its ability
to model complex spatio-temporal variations that possess
certain temporal statistics (e.g., for dynamic textures [33],
[34], human actions [35], dynamic surfaces [36], [37]).
In order to control the system’s state changes between two
events, an FSM having a discrete set of states S = {si}i=1...N

is coupled to D, where each si corresponds to an LDS Di.
The number N of LDS and their parameters {θ} can be
estimated by clustering of LDS and optimization of {θ} by
Expectation-Maximization [38] [7].

2) Dynamical system model representation: Interval-based
representation of Hybrid Dynamical Systems (IHDS) allows
us to describe event timing structures of model states (i.e.,
duration, synchronization, delays, and overlaps). They can
also be used for event classification or recognition [7]. Let
us denote Ik =< si, τj > an interval identified by a state (or
mode) si ∈ S and a duration τj = ek − bk, where bk and ek
are the starting and ending time of Ik respectively. Complex
human behaviors (i.e., verbal and nonverbal communication
events) are represented using IHDS (see Fig. 3 (bottom)),
similarly to a musical score where {Ik} are notes and N is
the scale. (Hence, as si and thus Di is activated, a sequence
of continuous states can be generated from {x(t)} and
mapped to the output observation space as {y(t)}.)

B. Multimodal interaction level modeling

Let us define an interaction event as an action-reaction
pair. Particularly, the interaction level between multimodal
signals can then be defined by the number of occurrences of
synchronized events that happen within a delay (i.e., reaction
time), and can characterize reactivity. Synchronized events can
be identified by computing temporal differences between the
beginning and ending of each interval. Hence, signal synchro-
nization Z of two signals Yk and Yk′ can then be estimated by
identifying all overlapping intervals (i.e., synchronized events)
in the signal I = {(Ik, Ik′) : [bk, ek] ∩ [bk′ , ek′ ] 6= ∅}, and by
considering the following distribution:
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Fig. 5. Examples of poster presentations and group discussions captured by our multi-view video system in various environments. In each image, top view
shows audience, and bottom-right view shows presenter. Frame number is given below each image (cameras are synchronized). Faces and face features are
tracked across sequences to determine head motions, while speech is recorded. (Top row) Poster presentation held in a meeting room (one presenter, two in
the audience). Bottom-left view is left for statistical representation of pixel depth (i.e., blue dots obtained from online multiview stereo reconstruction) which
is used for tracking of each audience member’s face region. (Middle row) Casual discussion held in a meeting room (one presenter, two in the audience).
(Bottom row) Poster presentation held in a conference hall with high ceiling and dim lighting (one presenter, three in the audience). Bottom-left view shows
the third audience member.

Z(Yk, Yk′) = Pr({bk − b′k = ∆b, ek − ek′ = ∆e}I | (3)
{[bk, ek] ∩ [bk′ , ek′ ] 6= ∅}I ]).

The distribution can be modeled as a 2D Gaussian centered
in Z0 =

∑
∆(Ik,Ik′ )
Nkk′

, where Nkk′ is the number of overlapping
intervals in I and ∆(Ik, Ik′) = ((bk − bk′), (ek − ek′))
is the temporal difference between Ik and Ik′ . Z contains
information about reactivity with respect to reaction time
(which is particularly meaningful when |bk− bk′ | < 1s). Note
that, if {(bk − bk′)→ 0} and {(ek − ek′)→ 0}, then all pairs
of overlapping intervals are synchronized.

VI. EXPERIMENTAL RESULTS

A. Datasets

To assess the collective performance of our framework,
the system was tested in real-world situations such as in
conference hall and meeting rooms (see Fig. 1,5). Our ex-
periments focus on bipartite interactions in group discussions
(i.e., between one presenter and one audience’s member). Real

poster presentations as well as casual discussions between 3-4
people were held to evaluate the interaction level of subjects
using the proposed smart digital signage. The number of
participants was limited to 4 as it was observed that close dis-
tance communication is suitable to trigger numerous nonverbal
interactions. More than 20 poster presentations of around
15 minutes each involving different speakers, audiences, and
poster contents were actually captured for our experiments.

B. System performance

The proposed system is installed in a small environment
(2m*1.5m) and consists of 6 video cameras with UXGA
resolution (1600*1200 pixels), which allows us to perform
more accurate face detection and face feature tracking (see
Fig. 5). Despite fairly cluttered backgrounds and various
illumination conditions, the system could effectively achieve
multimodal data capture. Audio, multiview videos, and depth
maps are recorded simultaneously while participant detection
and face feature tracking are performed in real-time. In the
current implementation, multimodal interaction modeling is
computed offline. The technical challenges mainly deal with
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storage management (e.g., 15min of continuous capture from a
single camera in HD raw format at 30fps requires 20GB), and
simultaneous recording and writing. As the portable system
uses only one PC to perform multiple video recording, several
SSD drives are used for online capture, and USB3.0 devices
for data transfer to storage devices, BOOST C++ library
for multithreading (for simultaneous video frame capture and
writing), and GPU (NVIDIA) computing for online visual
processing (e.g., face feature tracking).

C. Visual information dynamics model evaluations
First, the performance of each implemented part was evalu-

ated individually. Face detection and face feature tracking can
be performed robustly using techniques described in Sect. IV,
and no major problem was encountered with real-world data.
Average face feature position estimation error is below 5
degrees. Our sole recommendation is to place the system in
a location with adequate lighting for better archiving quality
(and as Kinect depth sensors do not perform well in direct
sunlight).

To evaluate our multimodal interaction dynamics model
employing Hybrid Dynamical Systems (HDS), experiments
were performed on synthesized datasets that possess temporal
statistics. In our framework, face features tracked across time
are extracted from color and depth image information. In
order to simulate real data, several 3D surfaces were created
which undergo various deformations and noise and whose
points can be tracked across time. The observed deformations
consist of noisy sinusoidal signals {y}, where y = α sin(βπx),
α = 6, 4, 2, 8 and β = 10, 2, 7, 5 respectively, with an
additional random noise on x and y (< 5%). Hence, time
series can be extracted from surface point features, modeled
using HDS and then reconstructed to evaluate the accuracy of
the modeling. In our experiments, to account for spatial noise,
surfaces are sampled into patches (consisting of 4 to 6 ver-
tices) and multivariate observations are extracted locally (per
vertex in each patch) from the 3D surface models. The shape
index [39] is used to capture continuous local deformations,
while returning values in [0, 1] (see Fig. 6 (Top)). Furthermore,
the same experiments were performed on 3D surfaces from
real datasets obtained from multiview 3D reconstruction (as
described in Sect. III-B) [40], and patches were extracted on
body part regions (e.g., head, limbs) for evaluations. Note
that HDS modeling is sensitive to sampling and clustering
parameters, and also the number N of HDS states. However
these parameters can be efficiently derived by the Expectation-
Maximization algorithm (see [7], [38]). In Fig. 6, we show
results on synthesized and real datasets using the same pa-
rameter set (with N = 6 states) that was optimized using the
real datasets for the sake of consistency, by minimizing the
following model fitting error which approximates the overall
log-likelihood score:

Err(N) = ‖Y − Y rec(N)‖2 =

√√√√ T∑
t=1

(yt − yrec
t (N))2, (4)

where Y is the original observed signal, and Y rec(N) is a
reconstructed signal using N dynamical systems. The optimal

number of dynamical systems is then determined by extracting
the value where the error difference between consecutive steps
is maximal:

N = arg max
Nk∈N+

|Err(Nk − 1)− Err(Nk)|. (5)

With both synthesized and real datasets, the interval-based
representation shows internal patterns that repeat several times,
which correspond to cycles of transitions between linear
dynamical systems, and Err(6) < 6% on average after
normalization. a) and d) show examples of two multivariate
observations from synthesized data where (α, β) = (6, 10)
and (8, 5) respectively, b) and e) show HDS modeling using
N = 6 states, and c) and f) show reconstructed signals from
the HDS models, g) and j) show examples of observed signals
from two point patches of real data from leg and head regions
respectively, h) and k) show HDS modeling using N = 6
states, and i) and l) show reconstructed signals from the HDS
models. Thus, the proposed implementation can effectively
model visual event dynamics.

D. Speaker diarization results using real data

The objective of speaker diarization is to track speaker
turns during the whole poster presentation. We note that
the recorded speech signal contains both the audience and
the presenter respectively. Thus, the corresponding speech
segments belonging to either the presenter or the audience
is tracked. The performance of the proposed classification
depends primarily on the following processes:
• The quality of the source separation through the micro-

phone array processing.
• The quality of noise-rendering to the unwanted signal.

Note that the speech other than the person of interest is
transformed to noise for improved discrimination.

• The acoustic model training used for the GMM classifi-
cation.

In Fig. 7, we show the results of the classification perfor-
mance using real recording when the audience is standing at
distances 1.0m, 1.5m and 2.0m, respectively with an angle
of -30 degrees relative to the normal axis of the display.
The presenter position is fixed at approximately 0.5m and
+30 degrees relative to the normal axis of the display. We
record a total of 100 samples of mixed stream of speech
signal (presenter and audience) for each distance location
(i.e., 1.0m, 1.5m and 2.0m). Each recording is of 3-minute
duration, and smoothing factors at various distances from the
microphone array are obtained experimentally: 0.10s at 1.0m,
0.20s at 1.5m and 0.35s at 2.0m (see Sect. IV-A2 for details).
The classification results (averaged over total samples) in
Fig. 7 show the performance of identifying both the presenter
and audience separately using our classification scheme with
noise-rendering, in comparison to a conventional method that
employs only GMM classification (model-based only).

Moreover we conducted statistical significance test based on
t-statistics for equal sample sizes with unequal variances [41].
To perform this, an additional set of 100 recording samples
is collected. T-tests showed that the improvement due to our
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Fig. 6. Examples of local multivariate observations, interval-based representation of HDS models, and signal reconstructions from HDS for synthesized and
real objects (Left and Right respectively). a) and d) are observations from simulated noisy data, while g) and j) are observations extracted from real human
data. b), e), h) and k) show interval-based representations of HDS modeling, respectively. c), f), i) and l) show reconstructed signals, respectively.

proposed classification was significant: t(198) = −2.13, p =
0.034.

E. Interaction level analysis

Multi-party interaction events (that include joint attention
and mutual gaze) are located and estimated from synchro-
nized overlapping verbal and nonverbal communication events
between participants (i.e., when multimodal interaction level
is high). In order to provide evaluations against ground-truth
measurements, the sequences were annotated manually [32].
The following results were obtained on two representative
sequences of the datasets. The sequence samples shown in
Fig. 8 contain 2000 and 2500 frames respectively. a) show
the results for a technical poster presentation involving one
presenter and two in the audience, and b) a casual discussion
between three subjects commenting on photos displayed on
the digital signage.

Fig. 7. Classification results using 100 test recording samples of real speech
data at various distances. The conventional method only involves GMM
classification (i.e., model-based only). On the other hand, we incorporate
noise-rendering to improve signal discrimination between the participants.
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Head motion dynamics were modeled using HDS, where
time series are obtained from head pose angles (see plots in
pixels: x is yaw, y is pitch). Interval-based representations of
HDS model states (IHDS) are computed with N = 4 states.
Here, we observed that state changes correspond to specific
head motions (e.g., turning to the display or audience and
nodding). The number of head movements of the participants
as well as their reactions to visual and audio stimuli are
then counted for comparison. Results are reported in Tab. II
and Tab. III. Presenter in a) and Subject 1 in b) made
numerous head movements towards the screen, and towards
other participants. In a) Audience 2 produced much more
nonverbal communication events than Audience 1, while in
b) Subject 2 and Subject 3 behaved similarly.

TABLE II
STATISTICS FOR MULTI-PARTY INTERACTION IN SEQUENCE A).

Presenter Audience 1 Audience 2
Head movements (/min) 26.5 32.0 19.5
Speech turns (%) 62.5 3.1 9.4
Visual reactions (/min) - 33 46
Audio reactions (/min) - 5 8

TABLE III
STATISTICS FOR MULTI-PARTY INTERACTION IN SEQUENCE B).

Subject 1 Subject 2 Subject 3
Head movements (/min) 32.3 25.3 27.3
Speech turns (%) 73.5 14.2 12.3
Visual reactions (/min) - 83 87
Audio reactions (/min) - 13 11

In addition, Fig. 8 (right) shows the timing structure syn-
chronization distributions for all pairs of overlapping states
obtained from HDS modeling as described by Eq. 3. Each
point of a plot represents the synchronization disparity of
a pair of overlapping states. Hence a point at (0, 0) stands
for total synchronization of a pair of states, meaning that
two events (head motions) performed by two subjects are
performed simultaneously, and with the same duration. A
point located in the upper-right quarter stands for ∆b > 0
and ∆e > 0. Red circles locate distribution centers and
represent the synchronization disparity average. The temporal
differences have a maximum |∆b| and |∆e| of 60f (i.e., 4s).
In the case of a), disparity is lower between head movement
dynamics of Presenter and Audience 2, than between Presenter
and Audience 1 as more points are located closer to the center.
In the case of b), disparity is similar between head movement
dynamics of Subject 1 and Subject 2, and between Subject 1
and Subject 3 (both distributions are similar). Timing structure
synchronization distribution details for each combination of
pair of overlapping states are given in Fig. 9.

From these observations, the interaction levels between par-
ticipants can be measured (as defined in Sect. V): in the poster
presentation, Presenter interacted much more with Audience 2
than with Audience 1, while in the Casual group discussion,
both Subject 2 and Subject 3 interacted equally with Subject 1.
Moreover, multimodal interaction levels between speech and

head movements are also modeled. Speaker turns obtained
by diarization (see Sect. V) allow us to evaluate the speech
activity of each participant. In a) Presenter speaks more,
while Audience 2 speaks more than Audience 1, and in b),
Subject 1 speaks the most, while Subject 2 and Subject 3
perform similarly. Global statistics for multi-party multimodal
interaction analysis obtained from state change occurrences are
reported in Tab. II and Tab. III. Naturally, the accuracy of these
measures depends on the ability of the vision system to track
faces and estimate orientations, and the ability of the speech
system to perform speaker diarization. In our experiments, we
globally obtained very accurate estimations compared to hand-
made annotations of audio and visual events (< 5% errors).
Let us mention that the face tracking of Audience 1 in a)
was lost around frame 1200 during the processing due to an
implementation issue. Nevertheless the unexpected tracking
behavior is successfully identified as a separate state by the
HDS model.

Furthermore, multimodal interaction levels are computed
between each participants in order to determine the reactivity
to visual and audio stimuli. Figure 10 presents interaction
levels between the main speaker and each participant. The
graphs represent the total number of reactions synchronized
with stimuli with respect to the number of frames (from
the beginning of the sequences), with a video frame rate of
15fps. In a) and b), the figure shows: (Left) head reactions in
response to audio stimuli for all participants (main speaker
included), and (Right) head reactions of participants other
than the main speaker in response to visual stimuli from him.
In a), it can be seen again that Audience 2 has much more
reactions than Audience 1 for both audio and visual stimuli.
In b), the number of reactions are similar, showing equal
interaction level between Subject 2 and Subject 3. Note that
more reactions are found with the visual stimuli. As human
reaction time to audio and visual stimuli is usually below 1s
(15 frames), the level of attention of each participant can
be derived by the behavior of the curves near the origin.
Interestingly it can be observed that reaction times of Audience
2 and Subject 2 are very good, which is also confirmed
by checking the videos. As a result, multimodal interaction
dynamics modeling allows us to locate and estimate multi-
party interaction events (e.g., that include joint attention and
mutual gaze) from synchronized overlapping verbal and non-
verbal communication events between participants of poster
presentation or casual group discussion.

VII. CONCLUSION

This paper presents a novel multimodal system that is
designed for multi-party human-human interaction analysis.
Human speech communication is intrinsically bi-directional
and duplex, and feedback behaviors play an important role in
smooth communication. Feedback behaviors of an audience
are particularly important cues in analyzing presentation-style
conversations.

In this work, the proposed system which consists of a
large display equipped with multiple sensing devices has been
tested in real-world situations such as poster presentations,
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a) Poster presentation

b) Casual discussion

Fig. 8. Multi-party multimodal interaction dynamics modeling for: a) Poster presentation and b) Casual discussion. From the top: head position (x, y) in
pixels, IHDS modeling with 4 modes, and speaker diarization (red: idle, blue: speech, green: nod/ok/laugh). Right: IHDS synchronization distributions.

Fig. 9. Timing structure synchronization modeled using multivariate normal distributions. Each point of a plot represents the synchronization disparity of a
pair of overlapping states (∆b,∆e). Colors (light to dark blue) represent distances to center (red). In a) Poster presentation, synchronized communication
events are more frequent between Presenter and Audience 2 than with Audience 1. In b) Casual discussion, statistics of Subject 2 and Subject 3 are similar.
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Fig. 10. Multimodal interaction level for a) Poster presentation, and b) Casual discussion. The graphs represent the total number of reactions synchronized
with stimuli with respect to the number of frames.

in which a researcher makes an academic presentation to a
couple of persons using a digital poster. Poster sessions have
become a norm in many academic conventions because of
the interactive characteristics. Audio and visual information
is captured and processed jointly using established and state-
of-the-art techniques to obtain individual speech and gaze
direction, while multiple users positioned in front of the panel
freely interact using voice or gesture, looking at the displayed
contents. In addition, a new framework is proposed to model
A/V multimodal interaction between verbal and nonverbal
communication events using hybrid dynamical systems. In
particular, we show that visual information dynamics can
be used to detect nonverbal communication events that are
synchronized with verbal communication events. As a result,
multimodal interaction dynamics modeling allows us to esti-
mate users’ interaction level. Speaker presentation or displayed
information can then be adapted for better communication.

For future research, we are investigating a multimodal
system in wider area such as meeting rooms, where more
participants and interactions would be involved, and full
3D data could be considered [42]. We are also working on
smaller scale systems where a compromise on accuracy has
to be done with low resolution equipments.
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