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Abstract This paper presents a novel approach to rep-

resent spatio-temporal visual information. We introduce

a surface-based shape model whose structure is invari-

ant to surface variations over time to describe 3D dy-

namic surfaces (e.g., 3D video obtained from multiview

video capture). The descriptor is defined as a graph

lying on object surfaces and anchored to invariant lo-

cal features (e.g., surface point extrema). Geodesic con-

sistency based priors are used as cues within a prob-

abilistic framework to maintain the graph invariant,

even though the surfaces undergo non-rigid deforma-

tions. Our contribution brings to 3D geometric data a

temporally invariant structure that relies only on in-

trinsic surface properties, and is independent of surface

parametrization (i.e., surface mesh connectivity). The

proposed descriptor can therefore be used for efficient
dynamic surface encoding, through transformation into

2D (geometry) images, as its structure can provide an

invariant representation for dynamic 3D mesh models.

Various experiments on challenging publicly available

datasets are performed to assess invariant property and

performance of the descriptor.

Keywords Invariant shape descriptor · Dynamic

surface · Geometry image · 3D video · Reeb graph

1 Introduction

It is one of the major goals of natural sciences to find

invariant properties. In the 90s, computer vision sci-

entists found several projectively invariant properties

(e.g., viewpoint, illumination and curvature invariants)
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Fig. 1 The proposed invariant surface-based shape de-
scriptor is shown in green, geometry images from planar
parametrization are shown at the bottom, and correspond-
ing reconstructed surfaces in gray. Despite deformations,
dynamic surface parametrization remains unchanged across
time (i.e., geometry images are similar). Hence sequence en-
coding can be optimal.

to characterize 3D object shape for recognition tasks [16,

34]. As it is difficult to find invariants on general 3D

shapes that are not planar (or simple), local descriptors

are used as well to model invariants and represent 3D

object surface as a collection of small patches [39]. In

this paper, we propose a new invariant surface-based

shape descriptor for dynamic geometric objects, that

is invariant to surface parameterization (e.g., surface

mesh complexity or connectivity) and visual features

(e.g., texture) as it relies only on intrinsic surface prop-

erties and geodesic paths. The descriptor is defined as a

graph lying on object surface and anchored to invariant

local features (e.g., extremal points). The graph struc-

ture invariance relies on the fact that geodesic paths

are theoretically invariant to surface parametrization.

Positions of graph edges and nodes are optimized us-

ing a Bayesian probabilistic framework driven by two
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geodesic consistency cues that handles ambiguities in-

troduced by numerical approximations: when surfaces

undergo non-rigid deformations over time, the overall

graph structure remains invariant to surface variations

(see Fig. 1). We show that the descriptor can be ap-

plied for efficient encoding of 3D video data (or free-

viewpoint video), which is becoming a popular media

developed by several research laboratories from all over

the world (e.g., Japan [29], France [3], UK [44], Ger-

many [1], etc.). See Fig. 2 for an example of 3D video

captured by Kyoto University [30].

As each 3D video frame is usually reconstructed in-

dividually (to avoid error propagation across time), the

produced 3D surface models have no geometric con-

sistency between each other: vertex number and mesh

connectivity are different. It is then not trivial to find an

optimal encoding scheme for the data structure, while

it is a crucial problem as (high resolution) 3D video

data usually require lots of storage space (i.e., giga-

bytes for few minutes). Moreover, as no adaptive resolu-

tion streaming mechanism exists for 3D video, commu-

nication and telepresence applications are still tedious

on low-bandwidth networks. Although 3D video data

can be post-processed to obtain meshes with consistent

topology and connectivity (see Sect. 2), how to cope

with geometry variations is still unclear (e.g., when the

mesh resolution has to dynamically change). However,

the proposed invariant surface-based shape descriptor

can be used to define cut graphs that cut open surface

meshes for parameterization into a square domain. As

the cut graphs are invariant regardless of mesh resolu-

tion, 3D video data can be transformed into sequences

of 2D images that are suitable for any 2D video encod-

ing technology (e.g., MPEG-4). This strategy is inspired

from the geometry image technique proposed by [18].

A preliminary version of the proposed model was

presented in [48]. However, we give here more technical

details on deformation invariant shape representation

(and particularly on surface extremal point extraction

using Reeb graphs), discussions on 3D video data en-

coding (e.g., sensitivity with respect to surface noise,

and difference with an approach using topology-based

shape descriptor), additional quantitative evaluations

and related work references. Related work is discussed

in Sect. 2. The invariant surface-based shape descriptor

is presented in Sect. 3. Section 4 introduces 3D video

data encoding using the proposed model. Section 5 de-

scribes various experiments on challenging datasets. Sec-

tion 6 concludes the paper with discussions.

Fig. 2 3D video data captured at Kyoto University [30]. Top
3D video data reconstructed frommulti-view video cameras.
Bottom examples of video frames

2 Related work

Multi-view sensing systems have become ubiquitous dur-

ing the past decade as image sensing technologies are

rapidly evolving. Dynamic scenes can be captured us-

ing fixed of active vision video cameras [24, 29, 17, 3],

broadcast cameras [44], 3D laser scanner [1], or even

handheld depth cameras [23]. Full 3D models of dy-

namic surfaces representing a scene can be reconstructed

using multiple view stereo reconstruction techniques

applied frame-by-frame (see [42] for a survey). Unlike

depth maps (2.5D data) which are unclosed surface, 3D

video data represent objects in full 3D as a sequence of

reconstructed closed surfaces. This technology has po-

tentially several applications in medicine, culture, com-

munication, entertainment, etc. A review of the whole

3D video reconstruction process and applications is pre-

sented in [30].

To encode a sequence of 3D meshes, the state-of-the-

art consists mainly of: (1) methods to compress every

frame independently (see survey [4]); however since re-

dundant information between frames is not managed,

encoding cannot be optimal. (2) techniques designed

for 3D animation sequences (e.g., using principal com-

ponents [2], geometry videos [7], linear prediction cod-

ing [25], Frame-based Animated Mesh Compression of

MPEG4 [28], etc.); however as they are dedicated to

meshes sharing the same connectivity, they cannot be

applied directly to 3D video data. A step for surface

alignment across time after surface reconstruction is

necessary as post-processing (e.g., using spherical match-

ing [43], multidimensional scaling [8], template defor-

mation [52], patch-based surface tracking [9], geodesic

mapping [47], etc.), but would not be sufficient for ap-

plications requiring adaptive bitrate streaming.
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Fig. 3 Temporal geodesic consistency. a) Critical points extracted on surface mesh using Reeb graphs [50]. b) Geodesic
consistency ambiguity map (darker means less position ambiguity). c) 50 temporally consistent points chosen randomly.

On the other hand, the literature has provided nu-

merous 3D shape models based on volume, surface,

global or local properties (e.g., medial axis [6], skeleton-

curve [12], Reeb graphs [21]). Although most of descrip-

tors can capture intrinsic shape property, they are not

suited for dynamic representation as their structure is

usually too noisy. Similarly, skeleton representation can

capture intrinsic information of shape based on surface

or volume (e.g., using a priori human model [11], thin-

ning [36], rigging [5], etc.) but are either not invariant

in time or often need prior knowledge on the shape to

be described (e.g., a human skeleton). Also, once the

intrinsic structure is found (i.e., shape topology), local

surface details are usually excluded from the represen-

tation [51]. Hence, we propose here a new surface-based

shape descriptor that can be used to define cut graphs

on 3D model surfaces and encode 3D mesh sequences

using a transformation into 2D video by cutting and pa-

rameterizing 3D surface meshes on image planes (e.g,

using [40]) as in geometry video [7] and skin-off [20]

methods. However, unlike existing methods, our model

has invariant property to surface deformations and is

thus well suited to sequences of inconsistent geomet-

ric data such as 3D video data. To our knowledge, no

similar model has been designed in the literature (e.g.,

see surveys on invariant descriptors [16, 34], invariant

skeleton [33], etc.).

3 Deformation invariant shape representation

3.1 Local feature point tracking

3.1.1 Critical point extraction

Let us assume that dynamic surfaces representing real-

world objects in motion can be approximated by com-

pact 2-manifold meshes. We consider geodesic distances

to characterize surface intrinsic properties, as geodesic

distances are invariant to isometric shape transforma-

tions when normalized (and can also be used to measure

distortion between shapes [8]). Let µ : S → R denote

the continuous function defined on the object surface

S:

µ(v) =

∫
S
g(v, s)dS, (1)

where g : S2 → R is the geodesic distance between

two points on S. Eq. 1 is the geodesic integral function

whose critical points can be used to characterize shape

(see Morse theory [32]). The function µ is normalized

with respect to its minimal and maximal values µmin

and µmax as µN : S → [0, 1], where µN (v) = µ(v)−µmin

µmax−µmin
.

Maximal values of µN usually correspond to limb ex-

tremities (e.g., of human or animal models) while global

minimum corresponds to body center.

3.1.2 Reeb graph construction

As illustrated in Fig. 3a, we can use µN to build Reeb

graphs in order to identify and match critical points

over time using geometry and topology information.

Reeb graphs are high level shape descriptors that can be

used for shape matching and retrieval in large datasets

(e.g., see [38] for Reeb graph theory, [37] for efficient

Reeb graph construction, [21, 50] for shape retrieval in

datasets of 3D models and [22] for 3D videos). Let us

assume that 3D surface models are defined as compact

2-manifold surfaces approximated by 3D meshes, and

let S denote a surface mesh. According to the Morse

theory, a continuous function µ : S → R defined on S

characterizes the topology of the surface on its critical

points. The surface connectivity between critical points

can then be modeled by the Reeb graph of µ, which is

the quotient space defined by the equivalence relation

∼ . Assuming the points x ∈ S and y ∈ S, then x ∼ y

if and only if:{
y ∈ same connected component of µ−1(µ(x)),

µ(x) = µ(y),
(2)

where the Morse function µ is defined as above. Hence,

the Reeb graph of µ on S describes the connectivity of
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the level sets of µ. Note that the inverse function µ−1

is defined on R and returns regions on S corresponding

to level sets of µ at some isovalues.

3.1.3 Critical point matching

As defined above, the Reeb graph structure relies on

surface critical points and captures surface topology.

Consequently, graph nodes can be used to embed var-

ious local, global, geometry or topology information.

Hence, critical point matching (i.e., Reeb graph leaf

nodes) can be achieved by defining a similarity function

accounting for embedded information in Reeb graph

nodes. In practice, each node embeds the range of µN
values it belongs to, the corresponding relative surface

area, and topology information (i.e., graph node va-

lence) as in [50, 49]. This method is efficient for dis-

criminating and matching nodes in real-world object

datasets such as the ones used in this paper, as natural

shapes and poses are usually asymmetric (i.e., nodes

contain different weights). However, in the particular

case of synthesized data, when node matching can be-

come ambiguous because of symmetry (e.g., if two legs

are exactly similar), it may be necessary to leverage em-

bedded information with geometrical or prior informa-

tion (e.g., using node coordinates). Methods involving

time-varying Reeb graphs [13] or scale-space [27] can

be used for complex scenario of critical point tracking.

3.2 Temporal geodesic consistency

Definition 1. Assuming a set ofN points B = {b1, ..., bN}
defined on a 2-manifold S, the points v1 and v2 on S
are said geodesically consistent with respect to B if and

only if:

∀i ∈ [1, N ], |g(v1, bi)− g(v2, bi)| ≤ ε, (3)

where ε→ 0. If the points in B do not have any particu-

lar configuration of alignment or symmetry, the geodesic

consistency property can be used to uniquely locate

points on S when N > 2. In practice, the uniqueness

is verified by checking the number of intersections of

isovalue lines from B, and ambiguities are solved by

increasing N or adding geometric constraints (e.g., Eu-

clidean distance). The framework is similar to a gener-

alized barycentric coordinate system defined in a Rie-

mannian manifold equipped with geodesic distance.

Definition 2. Assuming a set ofN points Bt = {bt1, ..., btN}
defined on a deformable 2-manifold St at time t ∈
[tb, te], the points vt1 and vt2 on St are said temporally

geodesically consistent with respect to Bt in [tb, te] if

and only if:

∀t ∈ [tb, te],∀i ∈ [1, N ], |g(vt1, b
t
i)− g(vt+δ2 , bt+δi )| ≤ ε,

(4)

where tb < te, t+ δ ∈ [tb, te] and ε→ 0. g is normalized

using the maximum geodesic distance over all pairs of

points on St to preserve geodesic consistency when sur-

faces undergo non-rigid deformations (e.g., scale changes).

Figure 3 illustrates temporal geodesic consistency with

respect to critical points (top: 8, bottom: 5) extracted

automatically using local geometry and topology prop-

erties (see [50]). Ambiguity maps are obtained by count-

ing the number of candidate pairs (vt1, v
t+δ
2 ) when ε > 0.

We observe that the regions located around object cen-

ters have very low ambiguity (i.e., numerical approxi-

mation is not an issue). In practice, we can search for

vt+δ2 = arg minv∈St

∑N
i=1 |g(vt1, b

t
i)− g(v, bt+δi )|.

3.3 Invariant surface-based graph construction

Definition 3. Let Ct = {ct1, ..., ctN} denote a set of

invariant local features (e.g., local extrema) on St that

are tracked over time in [tb, te]. The surface-based shape

descriptor T (Vt,Pt) is a graph on St whose nodes Vt
are temporally geodesically consistent with respect to

Ct in [tb, te]. Every edge in Pt of T is linked to a fea-

ture in Ct, and nodes of T represent edge junctions.

Here, an edge consists of a path1 on St. To maintain

the graph structure invariant over time independently

from the parameterization of St, we develop a proba-

bilistic framework where edge positions are optimized

using two geodesic consistency cues (see Fig. 4), while

being located in regions of low ambiguity (see Def. 2).

Construction. First, we define an initial graph struc-

ture ρ0 on Stb at tb as either the global minimum (i.e.,

one point) given by Eq. 1 if Stb is genus-0, or as a graph

cutting handles if the genus is higher (see [46], [14] and

Sect. 4). Second, we initialize the graph: ρ ← ρ0. The

graph T is then built by iteratively adding the shortest

edge linking a local feature (e.g., local maxima) in Ctb
to the current graph structure ρ until all elements in

Ctb are linked. At each step, the path ρj given by the

pair of points (ctbj , v
tb
j ) ∈ Ctb × ρ verifies:

(ctbj , v
tb
j ) = arg min

(c,v)∈Ctb×ρ
g(c, v). (5)

ρj is linked to ρ: ρ ← ρ ∪ ρj , and vtbj is inserted into

the set Vtb (initially empty). When every feature in Ctb

1 A path on a surface is a set of points linked two-by-two
by a line.
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Fig. 4 Deformation invariant descriptor. The descriptor is a graph (in blue) defined on the object surfaces. Graph nodes are
maintained geodesically consistent over time, while edges vary adaptively to surface deformations. (Bouncing sequence.)

is linked to ρ, we obtain ρ = (
⋃
ρj) ∪ ρ0 and we finally

set: T ← ρ at tb.

For all t > tb, the invariant model is obtained by

building a graph whose nodes have temporal geodesic

consistency with the prior graph nodes and are located

at local maxima or in non-ambiguous regions.. The prob-

lem is formulated as an MRF to find the optimal paths

linking the graph nodes using intrinsic surface proper-

ties, so that graph constructions across time are inde-

pendent from surface parameterization. The algorithm

to construct a graph at t is the following:

1. Extract local features Ct = {ct1, ..., ctN} on St using

Eq. 1 and match them to prior ones in Ct−1 (e.g.,

using geometry and topology information [50]).

2. Derive an initial structure ρt0 on St geodesically con-

sistent to the prior one. Note that for genus-0 sur-

face, ρt0 is usually a point located around the object

center. Set the graph at t: ρt ← ρt0.

3. Edges that link the features Ct to the current graph

structure ρt are added iteratively, and in the same

order as the prior steps. Let Pt = {pti} denote the

set of points forming a path (a graph edge) linking a

feature ct to a node vt at t, andDt = {dti} denote the

set of points forming the shortest path linking ct to

vt (e.g., using Dijkstra’s algorithm). To obtain the

optimal path Pt = {pti}, the problem is expressed

as a MAP-MRF where the surface mesh vertices at

t serve as sites. Probabilities of pti to be at some

positions at t are computed given known priors Pt−1
and Dt. The posterior probability to maximize is:

Pr(Pt|Dt,Pt−1) ∝∏
i

Ed(p
t
i, d

t
i)Ep(p

t
i, p

t−1
i )

∏
i

∏
j∈N (i)

V (pti, p
t
j),

(6)

where Ed and Ep are the local evidence terms for a

point pti to be at positions inferred from dti and pt−1i

respectively, N (i) is the neighborhood of i, and V

is a pair-wise smoothness assumption (so that Pt
forms a path on St). Ed and Ep are defined as what

follows:

Ed(p
t
i, d

t
i) = fd(

∑
k∈[1,N ]

||g(pti, c
t
k)− g(dti, c

t
k)||), (7)

Ep(p
t
i, p

t−1
i ) = fp(

∑
k∈[1,N ]

||g(pti, c
t
k)− g(pt−1i , ct−1k )||),

(8)

where fd and fp are Gaussian distributions cen-

tered on dti and pt−1i respectively, g is the normal-

ized geodesic distance, ctk ∈ Ct and ct−1k ∈ Ct−1.

Note that indices were simplified for clarity: Pt−1,

Pt and Dt may not have the same number of ele-

ments, and dti and pt−1i are the closest point to pti on

Dt and Pt−1. Hence, Eq. 6 estimates the probability
of Pt to be geodesically consistent to the previous

edge Pt−1, while being influenced by the shortest

path Dt. Let P? denote the optimal path linking

the feature ct to the node vt. Thus, we have to esti-

mate:

P? = arg max
{Pt}

Pr(Pt|Dt,Pt−1), (9)

where {Pt} denotes all the possible paths linking

ct to vt. Shortest paths are added one-by-one to

avoid edge overlapping when linking local features.

Ed acts as a force that attracts the path to a state

where the stress is lower (see Fig. 4) when an elastic

deformation occurs or in case of surface noise (e.g.,

3D reconstruction artifact). As well, Ed prevents the

model to be subject to error accumulation over time,

causing drift effects. On the other hand, Ep main-

tains the graph structure consistent over time, which

can be crucial for some applications (see Sect. 4).
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Fig. 5 Invariant property against surface parameterization. The graph structure is maintained invariant even though the
surface mesh complexity and connectivity change. Here, the number of vertices varies from 2500 to 125 vertices. (Lock sequence.)

ρt is obtained by iteratively adding paths P?j linking

ctj ∈ Ct to the current graph at node vtj . v
t
j is the

closest point on the current graph to:

v̄tj = arg min
v∈ρt

[λ.g(v̂tj , v) + (1− λ).g(v̌tj , v)], (10)

where v̂tj is the point in St geodesically consistent

to vt−1j in St−1 with respect to Ct, v̌tj is the inter-

section point given by the shortest path from ctj to

ρt, and λ = 0.5 is a weight. (Dependence to tempo-

ral priors are canceled if λ = 0.) In addition, vtj is

constrained to belong to the edge derived from the

edge containing vt−1j . The structure of T is therefore

maintained invariant over time. Note that priors can

be extended to {Pt−k}tb<k<t.
4. Repeat Step 3. until every feature in Ct is linked

to ρt. Finally, the graph T at t is given by ρt ←
(
⋃
P?,tj ) ∪ ρt0.

5. Set t← t+ 1 and repeat Step 1. to 4. for all t < te.

Note that the optimization problem in Step 3. can

be effectively solved by dynamic programming. Finally,

as illustrated in Fig. 5 we obtain a graph that is invari-

ant over time regardless of the surface parameterization

(i.e., mesh complexity and connectivity).

4 3D video data encoding

We propose to apply the descriptor to 3D video data for

encoding purpose using a strategy inspired by geometry

images [18]. The overall geometry image transformation

scheme is illustrated in Fig. 6. The strategy consists in

transforming 3D video data stream into 2D video. Any

mature 2D encoding algorithm (such as Windows Me-

dia, MPEG-4, Quicktime, etc.) can then be used for

(lossless) compression. Particularly, the surface-based

shape descriptor T introduced in the previous section

provides an invariant structure to 3D data obtained

independently, such as a sequence of 3D meshes ob-

tained from multiple view stereo (e.g., from Kyoto Uni-

versity [29] or University of Surrey [44]). The invari-

ant description can then be exploited to obtain optimal

encoding, as successive geometric data representations

present small variations.

Fig. 6 Invariant property against surface parameterization.

For each frame, the graph structure of T is used as

a cut graph ρ that cuts and opens the 3D surface mesh

M into a disk (a genus-0 chart). M is then mapped

onto a flat parameter domain, which will be used as an

image plane. Finally, M is resampled on a regular grid,

where the 3D coordinates XYZ are scaled and stored as

RGB pixel components to form a 2D (geometry) image

I. To retrieve M from I, RGB values are simply recon-

verted to 3D coordinates. When applying the transfor-

mation on a sequence of 3D meshes, the process returns
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a sequence of images (i.e., a video). As the graph struc-

ture is invariant over the sequence, consecutive frames

vary smoothly and can therefore be efficiently encoded

using any popular codec for 2D video. Note that if a

lossy compression method is used for encoding and al-

ters the border of I, cracks may be observed on the

reconstructed surface around the cut ρ. In that case, a

post-processing step (e.g., mesh joining or hole filling)

may be necessary to preserve the topology of the initial

mesh. The advantage of the proposed invariant surface-

based shape descriptor for 3D video encoding is at least

twofold:

1. The shape descriptor can be used as cut graphs

to produce smoothly varying geometry images from

real-world 3D video data independently from the

surface parameterization, i.e., even though the mesh

resolution or connectivity is inconsistent between

consecutive frames. Hence the model allows for adap-

tive bitrate streaming application, whereas state-of-

the-art methods cannot be applied (e.g., geometry

video [7], independent planar parametrization [40]).

2. In standard parameterization approaches (see [40]

for state-of-the-art implementation of [15, 18]), the

computation of the cut graph ρ is obtained itera-

tively and requires several parameterization steps to

detect all the local extrema one-by-one (e.g., using

triangle geometric stretch). On the other hand, the

proposed strategy is one-shot, and still guarantees

that the generated cut path passes through all local

extrema of M (i.e., surface protrusions), which is a

crucial condition to preserve the geometry accuracy

after transformation. When the cut graphs are well

defined, the transformation can be used for lossless

compression of 3D meshes.

Sensitivity to topological perturbations. As the

cut graph passes through all extrema, critical points

usually lie at the boundaries of the parameter domain.

When surface topology changes, the number of critical

points may vary, and the graph structure can locally

change. This results in a discontinuity between con-

secutive geometry images that cannot be avoided. On

the other hand, it guarantees that the original surface

topology is preserved and can be reconstructed from

a single chart. Otherwise a surface alignment method

should be applied as preprocessing (see Sect. 2), but

large resolution variations as shown in Fig. 5 would not

be handled and original topology would be lost. Meth-

ods that estimate global geodesic distortions for shape

matching are usually robust to local surface deforma-

tion (e.g., using isometry invariant framework [31], gen-

eralized multidimensional scaling [8], etc.). However,

the global measures can be strongly affected by sur-

face topology changes, as opposed to the proposed de-

scriptor which is only locally affected. Figure 7 shows

geometry image discontinuities when altering geodesic

consistency of nodes and adding an arbitrary critical

point. As critical points are matched across time, im-

age regions with no perturbation remain aligned (see

left part of images).

Surface-based shape descriptor versus topology-

based shape descriptor. In [51]. the authors intro-

duced a method for 3D video encoding using a topology-

based shape descriptor, namely the augmented Mul-

tiresolution Reeb graph (aMRG) [50], which is similar

to the graph depicted in Sect. 3. The approach con-

sists of: (1) automatically extracting intrinsic informa-

tion of surface shape by computing an aMRG for each

3D video frame, (2) tracking and recording each aMRG

node relative displacement across time, and (3) com-

pactly encode 3D video sequences using the obtained

representation. To reconstruct a 3D video sequence, a

reference mesh (e.g., frame #0) is deformed by deriving

the positions of all aMRG nodes across time. The dy-

namic surface is recovered by skinning (e.g., using dual

quaternions [26]), where the aMRG serves as skeleton

and aMRG edges serve as bones. However, like defor-

mation mesh transfer methods (e.g., [5]), local surface

details are not encoded and therefore cannot be recov-

ered. Although these methods are well adapted to syn-

thesized 3D mesh sequences or low resolution 3D video

sequences, they are not sufficient to handle high resolu-

tion 3D video sequences reconstructed from real-world

objects that contain local details and subtle variations

(e.g., cloth wrinkles). In Sect. 5, we show the perfor-

mance of the proposed surface-based shape descriptor

for 3D video encoding and lossless compression (i.e.,

reconstruction).

5 Experimental results

Datasets. For experimental validations, we have tested

the algorithm on publicly available datasets of 3D video

reconstructed from multi-view images (from the Uni-

versity of Surrey [44], and the MIT [52]). The 3D video

datasets consist of real subjects wearing loose cloth-

ing and performing various actions, such as dancing or

jumping. Surfaces can therefore vary a lot between two

consecutive frames when the motion is fast. Results on

a synthesized dataset representing a galloping elephant

(from [45]) are also given. The model presents several

protusions which numbers are different from human

models (see Fig. 8). Our experiments aim to assess the

invariant property of the proposed descriptor regardless

of surface parameterization, and its performance (e.g.,
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Fig. 7 (Left and Center) Geometry images show discontinuities when graph nodes are not geodesically consistent. (Right)
Adding an arbitrary critical point alters locally the image boundaries. (Bouncing sequence.)

Fig. 8 Extremal point extraction on a mesh model from the
sequence Elephant [45]. Reeb graph [50] computation returns
10 extrema (i.e., limbs, tail, ears, tusks and trunk).

reconstruction accuracy) when applied for 3D video

adaptive bitrate streaming. For quantitative evaluation,

we use 3D mesh sequences processed by [9] as the sur-

face genus is theoretically consistent over the sequences.

(In practice, 3D video data can be post-processed us-

ing any surface alignment method to prevent surface

topology changes as described in Sect. 2.) In addition,

we remeshed the sequences to cancel all mesh connec-

tivity consistency, and produced mixed resolution 3D

video data containing alternatively 3D meshes of 1000,

500, 250 and 125 vertices.

We perform comparisons to a state-of-the-art pa-

rameterization technique [40], where cut graphs are ob-

tained by iterative parameterizations. The approach,

here named Geometry Image Sequence (GIS), is known

to optimally encode closed 3D surface meshes. Results

obtained with our proposed technique on mesh sequences

having same resolution are denoted ‘fixed’, whereas re-

sults obtained on sequences with meshes having various

resolutions are denoted ‘mixed’.

Computation time. All computations were performed

on a dual-core PC (Intel Core2 Duo CPU @3.00 GHz,

4GB RAM). The proposed approach requires: (1) ex-

tremal point extraction and matching, (2) surface-based

descriptor construction, and (3) one-shot parametriza-

tion. Step (1) depends on µ function computation (see

Eq. 1). Running time is longer when using the geodesic

integral function, while using the height function as

in [37] is faster by several orders of magnitude (e.g.,

1min to 1min30s for a 4000 vertex mesh against few sec-

onds). The latter is used when it is safe to assume that

all meshes in the sequence are oriented. The geodesic

integral function is implemented using Dijkstra short-

est path algorithm with binary heap, whose complexity

is O((E+V )logV ), where E is the number of edges and

V is the number of vertices in a mesh. The overall run-

ning time using Eq. 1 is about 2min if V = 4000, 50s if

V = 2000, 15s if V = 1000, and below 6s if V < 500.

Invariant property evaluation. To assess the invari-

ant property of the descriptor to surface variations and

its ability to produce consistent geometry images that

varies smoothly, the mean square error of pixel values

(MSE) between consecutive geometry images is com-

puted (smaller MSE is better). It allows us to estimate

how much the geometry images vary over a sequence.

In our experiments, the size of geometry images has

been fixed to 128 × 128 pixels (encoded in RGB with

8bit per pixel component) for the sake of consistent

comparison. (To achieve optimal streaming, the geom-

etry images should indeed be resized with respect to

the mesh resolution.) Table. 1 shows average MSE ob-

tained on various sequences. The proposed descriptor

shows remarkable invariant property between consec-

utive frames: average MSE(fixed) values are very low.

Moreover, the resolution changes do not affect the per-

formance: MSE(mixed) are low as well. Note that as

GIS does not contain any stabilization mechanism: av-

erage MSE(GIS) values are high and are given for com-

parison.

Fig. 9 shows MSE graphs for several sequences. Fig-

ure 10 illustrates invariant graphs obtained with our

approach with fixed and mixed mesh resolution.
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Fig. 9 Mean Square Errors (MSE) of pixels between consecutive geometry images. Results obtained with [40] are denoted
‘gis’, results obtained with our method on sequences with fixed resolution are denoted ‘fixed’, and results obtained with our
method on sequences with mixed resolutions are denoted ‘mixed’.
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Fig. 10 Graph invariant property regardless of surface mesh complexity and connectivity. (top) shows a mesh
sequence with 1000 vertices. (bottom) shows the same sequence with meshes at different resolutions. Although surface parame-
terizations are different, the proposed surface-based shape descriptor computed on the Lock sequence shows invariant property
and adaptivity: graphs and geometry images remain similar.

Table 1 Average MSE of pixel values between consecutive
geometry images.

MSE(GIS) MSE(fixed) MSE(mixed)
Bouncing 35302 2886 3224
Crane 28485 1670 2025
Handstand 30671 1261 3125
Kickup 27700 1938 3753
Lock 22466 1700 3037
Samba 35302 2886 3282
Elephant 23232 4931 8151

Reconstruction accuracy. To assess the reconstruc-

tion accuracy of geometry images obtained from the

invariant surface-based shape descriptor used as cut

graphs, Hausdorff distances are computed between orig-

inal meshes and reconstructed meshes [35]. Average Haus-

dorff distances ∆ between ground truth sequences and

reconstructed surfaces by GIS and our proposed method

(with fixed resolution) are reported in Table. 2. We can

observe similar performances between the proposed ap-

proach and GIS as ∆ is very low for both methods. Re-

sults between original data and simplified mesh with

arbitrary resolution (e.g., 125 vertices) are given for

comparison (see ∆(ref)).

Figure 11 illustrates cut graphs obtained with the

proposed method against [40]. Note the strong geom-

etry image variations obtained with unstabilized cut

graphs. Additional examples given in Fig. 12 show the

Table 2 Average Hausdorff distances ∆ to ground truth.

∆(GIS) ∆(ours) ∆(ref)
Bouncing 0.0122 0.0126 0.0885
Crane 0.0126 0.0132 0.0729
Handstand 0.0119 0.0122 0.0920
Kickup 0.0118 0.0120 0.0862
Lock 0.0079 0.088 0.0783
Samba 0.0223 0.0237 0.0913
Elephant 0.0315 0.0466 0.0985

Fig. 11 Encoding and reconstruction of sequence Bouncing.
a) Our approach produces stable cut graphs that are used to
produce smoothly varying geometry images. b) Results with
unstabilized cut graphs [40]).
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descriptor invariant property to surface undergoing large

deformations. Furthermore, as shown in Fig. 13, our

method can achieve accurate reconstruction (compara-

ble to GIS which is optimal according to [18, 40]) while

using an original one-shot processing, as opposed to

standard iterative parameterizations employed by GIS.

Encoding performance. Table. 3 shows 3D video en-

coding performance with respect to different strategies

(zipped OFF, GIS, ours). For each format, the size of

each sequence is given in KB. Standard H.264/MPEG-

4 is used for compression of geometry images (128 ×
128p). As can be observed, our method clearly per-

forms better. Compressed geometry image sequences

obtained with stable cut graphs are 100 times smaller

than zipped sequences of objects in OFF format, and

around 40% smaller than sequences obtained with un-

stable cut graphs.

Table 3 3D video encoding. For each format, the size of each
sequence is given in KB. Standard H.264/MPEG-4 is used for
compression of geometry images (128 × 128p).

#fr. OFF(zip) GIS ours
Bouncing 174 16,300 304.4 169.9
Crane 173 14,100 283.7 162.7
Handstand 173 24,700 283.4 154.7
Kickup 219 29,900 365.1 197.0
Lock 249 32,400 388.2 204.0
Samba 174 22,200 304.0 173.2
Elephant 48 2,197 84.8 78.7

6 Conclusion

We present a novel invariant shape descriptor to repre-

sent spatio-temporal visual information that varies over

time, such as 3D dynamic surfaces. The proposed de-

scriptor consists in a surface-based graph that lies on

object surfaces, and is anchored to local features. The

overall graph structure is made invariant to surface vari-

ations using surface intrinsic geometric properties while

surfaces undergo non-rigid deformation. In particular,

the graph is defined within a probabilistic framework

using temporal geodesic consistency cues as priors, and

is independent to surface parameterization. Hence, the

descriptor can be used to bring an invariant structure

to 3D geometric data that are produced independently,

such as 3D video obtained from multiple view stereo.

We show that the proposed shape descriptor can

be employed as surface cut graphs, which enables 3D

surface models to be transformed into 2D (geometry)

images using a one-shot strategy while geometry is ac-

curately preserved. Moreover, the invariant property of

the representation allows the production of smoothly

varying images, regardless of the 3D surface mesh com-

plexity and connectivity. Therefore, the approach is suit-

able for adaptive bitrate streaming of 3D video data,

which was a challenging issue as state-of-the-art tech-

niques are only designed to optimally encode 3D ani-

mated mesh sequences sharing a same mesh connectiv-

ity.

For further research, it would be interesting to tackle

large scale 3D video encoding, e.g., where dynamic sur-

faces represent outdoor scenes composed of multiple ob-

jects. In this case, each individual foreground or back-

ground object could be described independently by an

invariant surface-based descriptor. A reasonable strat-

egy would consist of transforming a scene into multiple

(planar) geometry images, and eventually combine the

geometry images into one or several atlases. Similarly,

large objects or objects composed of several pieces (i.e.,

non-manifold surfaces) could be efficiently represented

using multi-chart geometry images (see [41, 10]). To

ensure the invariance of each surface-based descriptor

in each surface region, graph nodes would have to be

placed on the boundaries of the regions (i.e., charts) and

maintained geodesically consistent across the sequence

using the approach proposed in Sect. 3.3. Furthermore,

additional surface features such as color (when avail-

able) may be exploited. Also, it would be interesting to

extend the model to texture mapping such as in [19]

where geodesic paths are also exploited.
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