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ABSTRACT 

 

Visual tracking of humans or objects in motion is a challenging problem when observed data 

undergo appearance changes (e.g., due to illumination variations, occlusion, cluttered background, 

etc.). Moreover, tracking systems are usually initialized with predefined target templates, or 

trained beforehand using known datasets. Hence, they are not always efficient to detect and track 

objects whose appearance changes over time. In this paper, we propose a multimodal framework 

based on particle filtering for visual tracking of objects under challenging conditions (e.g., 

tracking various human body parts from multiple views). Particularly, we integrate various cues 

such as color, motion and depth in a global formulation. The Earth Mover distance is used to 

compare color models in a global fashion, and constraints on motion flow features prevent 

common drifting effects due to error propagation. In addition, the model features an online 

mechanism that adaptively updates a subspace of multimodal templates to cope with appearance 

changes. Furthermore, the proposed model is integrated in a practical detection and tracking 

process, and multiple instances can run in real-time. Experimental results are obtained on 

challenging real-world videos with poorly textured models and arbitrary non-linear motions. 

 

 

1. INTRODUCTION 

 

Visual tracking of human body parts is widely used in many real-world applications, such as 

video surveillance, games, cultural and medical applications (e.g., for motion and behavior study). 

The literature has provided successful algorithms to detect and track objects of a predefined class 

in image streams or videos (Yilmaz, Javed, & Shah, 2006; Wu, Lim, & Yang, 2013). Simple 

objects can be detected and tracked using various image features such as color regions, edges, 

contours, or texture. On the other hand, complex objects such as human faces require more 

sophisticated features to handle the multiple possible instances of the object class. For this 

purpose, statistical methods are a good alternative. First, a statistical model (or classifier) learns 

different patterns related to the object of interest (e.g., different views of human faces), including 

good and bad samples. And then the system is able to estimate whether a region contains an 
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object of interest or not. This kind of approach has become very popular. For example, the face 

detector of (Viola, & Jones, 2001) is well known for its efficiency. The main drawback is the 

dependence to prior knowledge on the object class. As the system is trained on a finite dataset, 

the detection is somehow constrained to it. As a matter of fact, most of the tracking methods were 

not designed to keep the track of an object whose appearance could strongly change. If there is no 

a priori knowledge on its multiple possible appearances, then the detection fails and the track is 

lost. Hence, tracking a head which turns completely, or tracking a hand in action remain 

challenging problems, as appearance changes occur quite frequently for human body parts in 

motion . 

In order to leverage visual tracking under challenging conditions, we introduce a multimodal 

framework based on the well-known particle filter model (Isard, & Blake, 1998). Our global 

model integrates various cues such as color, motion, and also depth to perform robust tracking. In 

addition, Earth Mover distance (Rubner, Tomasi, & Guibas, 1998) has been chosen to compare 

color models due to its robustness to small color variations, and drift effects inherent to adaptive 

tracking methods are handled using extracted motion features (e.g., optical flows). As well, an 

online adaptive process updates a subspace of multimodal templates so that the tracking system 

remains robust to occlusions and appearance changes. The tracking system is integrated in a 

practical workflow containing two modes, switching between detection and tracking. The 

detection steps involve trained classifiers to update estimated positions of the tracking windows. 

In our experiments, we use the cascade of boosted classifiers of Haar-like features by (Viola, & 

Jones, 2001) to perform head detection. Other body parts can be either detected using this 

technique with ad-hoc training samples, or chosen by users at the initialization step (i.e., pick and 

track method), or as well can be deduced based on prior knowledge on human shape features and 

constraints. Our experimental results show accuracy and robustness of the proposed method on 

challenging video sequences of humans in motion. For example, we use videos of yoga 

performances (stretching exercises at various speeds) with poorly textured regions, and arbitrary 

non-linear motions were used for testing (see Fig. 1), and also multiple view videos of multiple 

people interacting during a group discussion in various environments (e.g., meeting room, 

conference hall) as can be seen in Sect. 5. 

 

 

 

 

 

 

 

 

 

 

 

 

                   #1                                                     #30                                                   #70 

 

Fig. 1. Body part tracking with multimodal particle filter (using color and motion). Here, 

body parts located by the tracker are highlighted in green, while regions located by the detector 

(e.g., face) are highlighted in red. The proposed model is robust to strong appearance changes. 
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The rest of the paper is organized as follows. The next section gives a recap of work related to the 

techniques presented in this work. Section 3 presents an overview of the algorithm (initialization 

step and workflow). Section 4 describes the proposed multimodal particle filter framework. 

Section 5 presents experimental results on real-world datasets. Section 6 concludes with a 

discussion on our contributions.  

 

 

2. RELATED WORK 

 

During the past decades, image sensing devices such as video cameras and depth sensors have 

quickly become more accurate and accessible for non-expert users. This has lead to a rapid 

growth of various imaging applications (Tung, & Matsuyama, 2012). In particular, the scientific 

community has shown a real interest to human body part detection and tracking. For example, 

face detection in images is nowadays a popular and well explored topic (Viola, & Jones, 2001; 

Hjelmas, & Low, 2002; Choudhury, Schmid, & Mikolajczyk, 2003). In (Viola, & Jones, 2001), 

the authors proposed a cascade of boosted tree classifiers of Haar-like features. The classifier is 

first trained on positive and negative samples, and then the detection is performed by sliding a 

search window through candidate images and checking whether a region contains an object of 

interest or not. The technique is known to be fast and efficient, and can be tuned to detect any 

kind of object class if the classifier is trained on good samples. 

Similarly, tracking in video is also a popular field of research as image streams are now 

ubiquitous. However, object recognition in video data is still challenging when resolution is low 

(e.g., in video surveillance) and noise is high (e.g., due motion blur). Various approaches were 

proposed to extract image features for pattern matching and tracking (Lucas, & Kanade, 1981; 

Tomasi, & Kanade, 1991; Lowe, 2004; Lucena, Fuertes, & de la Blanca, 2004; Tola, Lepetit, & 

Fua, 2008). Lucas, Tomasi and Kanade first select the good features which are optimal for 

tracking, and then keep the tracks of these features in consecutive frames. The KLT feature 

tracker is often used for optical flow estimation to estimate the deformations between two frames. 

As a differential method, it assumes that the pixel intensity of objects is not significantly different 

between two frames. 

Techniques based on prediction and correction such as Meanshift (Cheng, 1995; Comaniciu, 

Ramesh, & Meer, 2000; Comaniciu, Ramesh, & Meer, 2003), Kalman filter (Kalman, 1960; 

Terzopoulos, & Szeliski, 1992; Blake, Curwen, & Zisserman, 1993; Rehg and Kanade, 1994), 

and more recently particle filters have become widely used (Isard, & Blake, 1998; Doucet, 

Godsill, & Andrieu, 2000; Perez, Hue, Vermaak, & Gangnet, 2002; Sugimoto, Yachi, & 

Matsuyama, 2003; Okuma, Taleghani, de Freitas, Kakade, Little, & Lowe, 2004; Dornaika, & 

Davoine, 2005; Wang, Chen, & Gao, 2005; Li, Ai, Yamashita, Lao, & Kawade, 2007; Ross, Lim, 

Lin, & Yang, 2007; Kim, Kumar, Pavlovic, & Rowley, 2008). Particle filters (or sequential 

Monte Carlo or Condensation) are Bayesian model estimation techniques based on simulation. 

The basic idea is to approximate a sequence of probability distributions using a large set of 

random samples (called particles). Then the particles are propagated through the frames based on 

importance sampling and resampling mechanisms. Usually, the particles converge rapidly to the 

distributions of interest. The algorithm allows robust tracking of objects in cluttered scene, and 

can handle non-linear motion models more complex than those commonly used in Kalman filters. 

The major differences between the different particle filter based approaches rely on the design of 
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the sampling strategies, which make particles having higher probability mass in regions of 

interest. 

In (Black, & Jepson, 1998; Collins, Liu, & Leordeanu, 2005 ; Wang, Chen, & Gao, 2005; Ross, 

Lim, Lin, & Yang, 2007; Kim, Kumar, Pavlovic, & Rowley, 2008), linear dimension reduction 

methods (PCA, LDA) are used to extract feature vectors from the regions of interest. These 

approaches suit well for adaptative face tracking and can be formulated in the particle filtering 

framework as well. Nevertheless they require a big training data set to be efficient (Martinez, & 

Kak, 2001), and still cannot cope with unpredicted change of appearance. On the other hand, 

color-based models of regions can capture larger appearance variations (Bradski, 1998; 

Comaniciu, Ramesh, & Meeh, 2000). In (Perez, Hue, Vermaak, & Gangnet, 2002), the authors 

integrate a color-based model tracker (as in the Meanshift technique of Comaniciu, Ramesh, and 

Meeh) within a particle filter framework. The model uses color histograms in the HSV space and 

the Bhattacharyya distance for color distribution comparisons. Nevertheless these methods 

usually fail to track objects in motion or have an increasing drift on long video sequences due to 

strong appearance changes or important lighting variations (Matthews, Ishikawa, & Baker, 2004). 

Indeed most algorithms assume that the model of the target object does not change significantly 

over time. To adapt the model to appearance changes and lighting variations, subspace of the 

target object features are extracted (Collins, Liu, & Leordeanu, 2005; Wang, Chen, & Gao, 2005; 

Ross, Lim, Lin, & Yang, 2007; Kim, Kumar, Pavlovic, & Rowley, 2008). In (Ross, Lim, Lin, & 

Yang, 2007), a subspace of eigenvectors representing the target object is incrementally updated 

through the tracking process. Thus, offline learning step is not required and tracking of unknown 

objects is possible. Recently, (Kim, Kumar, Pavlovic, & Rowley, 2008) proposed to extend this 

approach with additional terms in the data likelihood definition. In particular, the drift error is 

handled using an additional dataset of images. However, these approaches are particularly tuned 

for face tracking, and still require training datasets for every different view of faces. Note that 

tracking of multiple similar objects using various constraints (e.g., contextual constraint learning, 

constant velocity assumption, etc.) are out-of-scope of this paper (Brendel, Amer, & Todorovic, 

2011; Butt, & Collins, 2013). 

 

The overall workflow of our approach divides into two steps which are detection and tracking, as 

(Sugimoto, Yachi, & Matsuyama, 2003; Li, Ai, Yamashita, Lao, & Kawade, 2007). Switching 

between the two modes allows dynamic updates of the search window to an accurate position 

whenever the detection is positive. In this work, we propose a multimodal particle filter which 

relies on various cues (e.g., color, motion, depth) to achieve robust visual tracking (see also 

Maggio, Smeraldi, & Cavallaro, 2007; Wang, & Tang, 2010). Our tracker uses a subspace of 

multimodal templates of regions of interest extracted from previous frames, and relies on them to 

estimate the position of the object in the current frame. The subspace is iteratively updated 

through the video sequence, and dynamically updated by the detection process. The detection is 

performed by a cascade of boosted classifiers (Viola, & Jones, 2001) and thus can be trained to 

detect any object class. We also propose to use the Earth Mover distance to improve the 

robustness of tracking with lighting variations (see also Karavasilis, Nikou, & Likas, 2011), and 

constraints based on optical flow estimations to cope with drift effects. Note that a preliminary 

version of this work was presented in (Tung, & Matsuyama, 2008). 
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3. TRACKING SYSTEM OVERVIEW 

 

This section describes the overall workflow of the proposed visual tracking system, which 

consists of a practical tracking-by-detection strategy for object tracking in video. It contains two 

modes, switching between a detector and a multimodal tracker. The tracking process runs 

independently using multimodal cues (see Sect. 4) when no detection is positive for the class of 

the object of interest. It returns the object estimated position in the video (e.g., in pixel 

coordinates). On the other hand, the detector is used at system initialization, and to dynamically 

update the object estimated position.  

 

 

3.1. Initialization 
 

The initialization step consists in defining the objects to track. Basically, there are three practical 

strategies to define regions of interest (i.e., targets to track) as described below. Note that in this 

paper, we use human body parts to illustrate the effectiveness of our model because of the wide 

rang of possible applications.  

 

1. Automatically using a trained detector or template matching, e.g., using statistical machine 

learning method such as the cascade classifier of Viola and Jones, or some geometrical structure 

assuming the object shape is known a priori (Tung, & Matsuyama, 2012). 

 

2. Manually by interactively picking regions of interest (i.e., initialization in first frame). This 

allows users to track various body parts regardless of any prior knowledge. 

 

3. Incidentally using a priori knowledge (e.g., fuzzy rules) and by reasoning on the object 

constraints. As constrained motions of the human body (assuming its structure is known) give 

cues on body part locations, e.g., face position gives hints to deduce torso position, etc. 

 

After initialization, a subspace of reference templates consisting of the regions of interest (and 

containing multimodal information) is used by the tracker when processing the following frames. 

In some of the experimental results presented in Sect. 5, we have combined the three approaches: 

the head of a subject is automatically detected using a face detector, then torso position is 

deduced (assuming initial standing position), while hand positions are chosen manually in the 

first frame by picking.  

 

 

3.2. Workflow 
 

Assuming initialization occurs at time 0t , then for every frame at 0>, ttt , the tracker estimates 

the positions of M  objects of interest MiiA 1...=}{  based on a multimodal template-model 

subspace },...,{= 1

i

t

i

kt

i

t hhS −−  as introduced above, where 
i

jh  denotes the color-model of 
iA  at 

time j , and k  is the size of the subspaces (which in fact can be different for every object). 

Assuming a Bayesian framework (see Sect. 4), the state 
i

tx  corresponding to the estimated 

position of 
iA  at time t  by the tracker, is inferred by 

i

tS  and 
i

tx 1− . We denote by 
i

ty  the output 

corresponding to the detection of iA  at time t , and 
i

tz  the output of the overall system. If the 
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detection of iA  at t  is positive, then 
i

t

i

t yz = , else 
i

t

i

t xz = . Thus, if the detection of iA  at t  is 

positive, then 
i

tS 1+  is updated using the color model corresponding to 
i

ty . And if not, then 
i

tS 1+  is 

updated using the color model corresponding to 
i

tx . The workflow is illustrated on Figure 2 with 

1=M  and 1=k . 
 

 

 

 

 

 

 

Fig. 2. Overall workflow of the multimodal tracking system. If the detection process 
ty at time 

t is positive, then the system output 
tz  and the subspace of multimodal templates 

tS  are updated 

using
ty . If the detection fails, then 

tz  and 
tS  are updated using the tracking output

tx . Note that 

tS  as well as multimodal cues are used to estimate
tx . 

 

  

 

4. MULTIMODAL PARTICLE FILTER 

 

In this section we present our particle filter-based multimodal framework. The global formulation 

can take into account various multiple cue, such as a color-based model (Isard, & Blake, 1998; 

Perez, Hue, Vermaak, & Gangnet, 2002), motion estimation by optical flows (Tomasi, & Kanade, 

1991), and depth information. The Earth Mover Distance (Rubner, Tomasi, & Guibas, 1998) is 

used to compute distances between color models while being robust to lighting variations. Motion 

features and depth information are also used to improve tracking accuracy. Moreover, as 

described above, our method updates iteratively a subspace of multimodal templates to handle 

appearance changes and partial occlusions. 

 

Update output zt 

2. Tracking xt 

1. Detection yt 

at each iteration t 

Training set 

Multimodal cues at t 

Update subspace St 

OK 

NOK 
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4.1. Particle filter-based multimodal framework 
 

We denote by tx  a target state at time t , tz  the observation data at time t , and },...,{= 1 tt zzZ  

all the observations up to time t . Assuming a non-Gaussian state space model, the prior 

probability )|( 1−tt Zxp  at time t  in a Markov process is defined as:  

 

 ,)|()|(=)|( 11111 −−−−− ∫ ttttttt dxZxpxxpZxp  (1) 

 

where )|( 1−tt xxp  is a state transition distribution, and )|( 11 −− tt Zxp  stands for a posterior 

probability at time 1−t . The posterior probability whose the tracking system aims to estimate at 

each time is defined as:  

 

 ),|()|()|( 1−∝ tttttt ZxpxzpZxp  (2) 

 

 where )|( tt xzp  is the data likelihood at time t . According to the particle filtering framework, 

the posterior )|( tt Zxp  is approximated by a Dirac measure on a finite set of P  particles 

Pi

i

tx
K1=}{  following a sequential Monte Carlo framework (Doucet, Godsill, & Andrieu, 2000). 

Candidate particles are sampled by a proposal transition kernel ),|~( 11 −− t

i

t

i

t zxxq . The new 

filtering distribution is approximated by a new sample set of particles Pi

i

tx
K1=}~{  having the 

importance weights Pi

i

tw
K1=}{ , where 

 

 1.=
),|~(

)|~()~|(

1=11

1 i

t

P

it

i

t

i

t

i

t

i

t

i

tti

t wand
zxxq

xxpxzp
w ∑

−−

−∝  (3) 

 

The sample set Pi

i

tx
K1=}{  can then be obtained by resampling Pi

i

tx
K1=}~{  with respect to Pi

i

tw
K1=}{ . 

By default, the Bootstrap filter is chosen as proposal distribution: )|~(=),|~( 111

i

t

i

tt

i

t

i

t xxpzxxq −−− . 

Hence the weights can be computed by evaluating the corresponding data likelihood. Finally, tx  

is estimated upon the Monte Carlo approximation of the expectation 
i

t

P

it x
P

x ∑ 1=

1
=ˆ . 

 

We denote by E , a global (multimodal) energy function that can be defined using multiple 

various cues. For example, in our experiments: zdms EEEEE +++= , where sE  is an energy 

related to color cues (see Sect. 4.2), mE  and dE  are energies related to motion features (see Sect. 

4.3), and 
zE is an energy related to depth information when available (see Sect. 4.4). E  has 

lower values as the search window is close to the target object. Thus, to favor candidate regions 

(i.e., samples) whose multimodal information are similar to the reference model at time t , the 

data likelihood )|( tt xzp  is modeled as a Gaussian function:  

 ,exp)~|(
2 







−∝

σ

E
xzp

i

tt  (4) 
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 where σ  is a scale factor, and therefore a small E  returns a large weight. 
 

 

4.2. Color cue 
 

4.2.1. Color-based model 
 

The efficiency of color distributions to track color content of regions that match a reference color 

model has been demonstrated in (Bradski, 2000; Comaniciu, Ramesh, & Meeh, 2000; Perez, Hue, 

Vermaak, & Gangnet, 2002). They are represented by histograms to characterize the chromatic 

information of regions. Hence they are robust against non-rigidity and rotation. In addition, the 

Hue-Saturation-Value (HSV) color space has been chosen due to its low sensitivity to lighting 

condition. In our approach, color distributions are discretized into three histograms of hN , sN , 

and vN  bins for the hue, saturation, and value respectively. 

Let α  be h , s , or v , )(
3

1
=)( tttt xqxq

α

α∑ , and 
α

αα
Nitttt xiqxq

K1=)},({=)( . )( tt xq  denotes 

the kernel density estimate of the color distribution in the candidate region )( txR  of the state tx  

at time t , and is composed by:  

 ],)([=),(
)(

iuhKxiq

t
xRu

tt −∑
∈

αα
α δ  (5) 

where αK  is a normalization constant so that 1=),(
1= tt

N

i
xiq

αα∑ , αh  is a function assigning the 

pixel color at location u  to the corresponding histogram bin, and δ  is the Kronecker delta 

function. 

At time t , )( tt xq  is compared to a set of reference color model templates },...,{= 1−− tktt hhS , 

where k  is the number of templates. The templates are extracted iteratively from the detected 

regions at each frame. We recall that color model subspaces help to handle appearance changes 

and partial occlusions, and we define the energy function:  

 

 )]),(,[(min=)](,[ 2

tt

t
Sh

ttts xqhDxqSE
∈

 (6) 

  

where D  is a distance between color distributions (see Sect. 4.2.2). 

 

 

 
4.2.2 Earth Mover distance 

 

We propose to use the Earth Mover distance (EMD) (Hillier, & Lieberman, 1990; Rubner, 

Tomasi, & Guibas, 1998) to strengthen the property of invariance to lighting of the HSV color 

space. EMD allows the global comparison of color distributions relying on a global optimization 

process. This method is more robust than approaches relying on histogram bin-to-bin distances 

that are more sensitive to quantization and small color changes. The distributions are represented 

by sets of weighted features called signatures. The EMD is then defined as the minimal amount 

of work needed to match a signature to another one. The notion of work relies on a metric (e.g. a 

distance) between two features. In our framework we use the 
1L  norm as distance, and histogram 

bins as features. 
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Assuming two signatures to compare )},(),...,,{(= 11 mm wpwpP  and )},(),...,,{(= 11 nn uquqQ , 

P  having m  components 
ip  with weight 

iw , and Q  having n  components jq  with weight ju . 

The global optimization process consists in finding the amount of data ijf  of a signature to be 

transported from the component i  to the component j  that minimizes the work W :  

 

 ),(min=
1=1=

ijij

n

j

m

iij
f

fdW ∑∑  (7) 

 

 where ijd  is the distance between the components ip  and jq  assuming the following 

constraints: 

  

 

).,(min=

,1

,1

,1,10

1=1=1=1=

1=

1=

j

n

j

i

m

i

ij

n

j

m

i

jij

m

i

iij

n

j

ij

uwf

njuf

miwf

njmif

∑∑∑∑

∑

∑

≤≤≤

≤≤≤

≤≤≤≤≥

 

 

The first constraint allows only the displacements from P  to Q . The two following constraints 

bound the amount of data transported by P , and the amount of data received by Q  to their 

respective weights. The last constraint sets the maximal amount of data that can be displaced. 

The EMD distance D  between two signatures P  and Q  is then defined as:  

 ( ) ,==,

1=1=

1=1=

ij

n

j

m

i

ijij

n

j

m

i

f

fd
W

QPD

∑∑

∑∑

Ν
 (8) 

  

where the normalization factor Ν ensures a good balance when comparing signatures of different 

size ( Ν is the smallest sum of the signature weights). Note that EMD computation can be 

approximated in linear time with guaranteed error bounds (Shirdhonkar, & Jacobs, 2008). 

 

 

4.3 Motion cues 
 
 

Tracking using color information alone, as seen in many conventional tracking systems, usually 

leads to error propagation over time and drift (Matthews, Ishikawa, & Baker, 2004). Actually, 

structural information of templates is lost when evaluating sample positions as only the mass of 

colors is taken into account. Hence, we propose to use motion features to guide the search 

window through the tracking process, as they are based on local features (e.g., corners). In our 

implementation, motion features are extracted using the KLT feature tracker (Lucas, & Kanade, 
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1981; Tomasi,  & Kanade, 1991), although other techniques can be also applied (Lowe, 2004; 

Lucena, Fuertes, & de la Blanca, 2004; Tola, Lepetit, & Fua, 2008). The method detects local 

features and matches similar ones between consecutive frames (see Fig. 3). Outliers are filtered 

by RANSAC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3. Motion features. Motion features are extracted to support tracking process. Blue dots 

denote feature positions in the previous frame. Red lines show the estimated motion flows. Note 

that outliers are filtered by RANSAC. 

 

 

Assuming the set mj

j

tt yY 1...=11 }{= −−  of m  motion features detected in the neighborhood region of 

the state 
1−tx  (see Sect. 4) at time 1−t , and the set mj

j

tt yY 1...=}{=  of matching features 

extracted at time t , then mj

j

t

j

ttt yyYY 1...=11 )},{(=),( −−  forms a set of m  motion vectors (optical 

flow field) between the frames at time 1−t  and t . As well, we denote by 
i

tY
~

 the set of features 

detected in the neighborhood region of the particle 
i

tx~ , and ty~  the position of the search window 

estimated by optical flow as: )}({median=~
1...=11 mj

j

t

j

ttt yyxy −+ −− . Thus we define the 

following energy functions:  

 

 ),,
~

(C=~~=)~(
2

t

i

tdt

i

t

i

tm YYEandyxxE ⋅−⋅ βα  (9) 

 

where α  and β  are two constant values, and C  is the following function:  

 .
)(card

)
~

(card
1=),

~
(C

t

t

i

t
t

i

t
Y

YY
YY

∩
−  (10) 

 

The data energy mE  aims to favor the particles located around the object target position 

estimated by optical flow, whereas dE  aims to prevent the drift effect. dE  works as a constraint 

which attracts the particles near the estimated search window (see Fig. 4). mE  and dE  are 

introduced in the overall energy formulation as described in Sect. 4.1. 
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                                    (a)                                                                            (b) 

Fig. 4. Motion cues. (a) mE measures the distance between the estimated position 
i

tx~ by particles 

and the estimated position by optical flow ty~ . (b) dE maximizes the number of features detected 

in the previous frame. 

 

4.4 Depth cues 
 
The multimodal framework allows the introduction of various different cues. Particularly, in 

some contexts where multiple video cameras are used (and geometrically calibrated), such as in 

3D video studios (Matsuyama, Nobuhara, Takai, & Tung, 2012) or in smart environments (Tung, 

Gomez, Kawahara, & Matsuyama, 2012), it is possible to retrieve depth information from each 

camera view point using stereo reconstruction methods, and even obtain 3D reconstruction of the 

observed scene (Hartley, & Zisserman, 2004). As well, it is possible to get depth information 

using depth sensors, such as time-of-fight cameras or structured light cameras (e.g., Microsoft 

Kinect), and align geometrically depth images to color images obtained using conventional video 

cameras. Hence, depth cues can be introduced in the global energy E (see Sect. 4.1) by defining 

an energy function 
zE as follows: 

    )]),(,[(min=)](,[
2

ttzz

t
Sh

tttz zqhDzqSE
z ∈

       (11) 

where, 
tz is the depth value corresponding to color image pixel at 

tx , )( tt zq  denotes the kernel 

density estimate of depth distribution defined as in Eq. 5, 
zD is a distance between depth 

distribution, and 
zh is an element of the multimodal subset 

tS containing depth information (see 

Eq. 6). 

 

5. EXPERIMENTAL RESULTS 

 

Our algorithm has been tested on numerous real-world video sequences, and using different cue 

combinations. First, we have tracked the body parts of a lady practicing yoga (head, hands, torso, 

and feet) in different video sequences and from different viewpoints using color and motion cues. 

The model wears simple clothes with no additional features (see Fig. 1 and Fig. 7). As well, we 

have tested the same tracker on traditional Japanese dancer wearing clothes which are more much 

complex and contain a lot of features (see Fig. 5). The video resolutions are 640x480 and 

720x576 pixels respectively and were acquired at 25 fps. The algorithm was run on a Core2Duo 

3.0 GHz with 4GB RAM. As observed, different body parts are successfully tracked 

simultaneously. Furthermore, the tracking system was tested on multiple subjects captured from 

multiple viewpoints using color and motion cues in several long sequences of about 11min at 

25fps (see samples in Fig. 8a, 8b, 8c), and also using additional depth cues in several sequences 

i

tx~

 

 ty~  

t-1 

t 
1−tx  

)~( i

tm xE  i

tx~

t-1 

t 

  
 

 dE  



International Journal of Natural Computing Research (IJNCR), IGI Global, Vol. 4, No. 3, pp. 69-84, 2014.07-09 

 

of 3min and 15min at 25fps (see samples in Fig. 8d, 8e). We computed head poses by fitting a 3D 

face model. Face orientations using pitch, roll and yaw angles are estimated with 5 deg of 

accuracy. Roll angles can be estimated in a range of at least [-70;70], which is already 

significantly larger compared to state-of-the-art system implementation such as Kinect SDK. The 

system was partially implemented on the GPU, and  the tracking of 4 different targets was 

achieved in realtime. The following parameters were identical for all the experiments: we have 

used 10=hN , 10=sN  and 10=vN  for the quantization of color models, 200=P  particles, 

5=k  for the color model subspace size, and 0.1=2σ  as scale factor of the likelihood model. 

The constant values α  and β  weight the contribution of the motion cues, and are tuned 

regarding to the frame size. He have defined a square window size of 40 pixels to determine the 

regions of interest. The proposed formulation has shown promising results even in uncontrolled 

environments. The Figures 1 and 6 illustrate the robustness to appearance change, lighting 

variation and partial occlusion, thanks to the online update of the color-based model subspace 

combined with the Earth Mover distance and motion cues. For example, the system can track a 

head even if the face in no more visible (e.g. hidden by hair or due to changing viewpoint). Figure 

5 illustrates an accurate tracking with free-drift effect of a hand with a varying background under 

the guidance of optical flow as motion cues. Figure 7 illustrates the robustness of our approach in 

comparison to a color-based particle filter (Condensation of Perez, Hue, Vermaak, and Gangnet) 

that does not include our features. We show that the Condensation mixes regions having the same 

color shape and distribution whereas our tracker is not confused by the similar regions. This is 

due in particular to the addition of motion cues. Further evaluations of standard particle filter 

performances against existing techniques can be found in the literature (see Sect. 2).  

 

 

 

 

 

 

 

 

 

                #1                                   #2                                    #3                                   #4 

Fig. 5. Using motion cues to improve tracking. The combination of color cues and motion cues 

allows to perform robust tracking and prevent drift effects. The tracking of hands is efficient even 

with a changing background. 

 

 

 

 

 

 

 

 

                 #1                                  #45                                #145                                #165 

Fig. 6. Tracking with appearance change. The proposed approach relies on a subspace of 

multimodal cues (color models, motion cues, etc.) which is updated online across the video 

sequence. The system can track objects in motion with appearance changes. 
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               #40                                  #70                                  #80                                #90 

(a) Condensation. 

 

 

 

 

 

 

 

 

 

 
               #1                                    #5                                   #10                                 #20 

 

 

 

 

 

 

 

 

 
               #40                                  #70                                  #80                                #90 

(b) Proposed multimodal particle filter. 

 

 
Fig. 7. Robust body part tracking. (a) Classical Condensation methods (Isard, & Blake, 1998; 

Perez, Hue, Vermaak, & Gangnet, 2002) are confused by regions with similar color and shape 

content. (b) In frame #20, both hands are almost included in a same tracking window, but 

afterwards motion cues have helped to discriminate the different tracks. 
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               #50                               #2000                               #3150                              #3625 

(a) Camera view 1 - presenter view. 

 

          
               #50                               #2000                               #3150                              #3625 

 (b) Camera view 2 - top view. 

 

          
               #50                                #2000                              #3150                             #3625 

(c) Camera view 3 - audience view. 

 

          
             #1040                             #1550                              #3025                              #3825 

(d) Multiview tracking of 3 subjects using depth cue in meeting room. 

 

          
             #1950                              #9700                             #15400                              #19525 

(e) Multiview tracking of 4 subjects using depth cue in conference hall (IEEE ICASSP'12 demo). 

 

Fig. 8. Multiple people tracking from multiple views using multimodal particle filter. A 

presenter and its audience are tracked using a smart poster system consisting of multiple view 

cameras. In (a), (b) and (c), modalities include color and motion cues. In (d) and (e),  modalities 

include color, motion, and depth. In (d), tracking system outputs are shown in red. Depth cues are 

represented by blue points and at bottom left (depth value distribution). In (e), tracking system 

outputs are shown in blue. The system tracks four subjects simultaneously in real-time. 
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6. CONCLUSION 

 

Visual tracking of human body parts is a major research field due to the numerous possible 

applications. The literature has provided powerful algorithms based on statistical methods 

especially dedicated to face detection and tracking. Nevertheless, it is still challenging to handle 

complex object classes such as human body parts whose appearance changes occur quite 

frequently while in motion. 

In this work, we propose to integrate multiple various cues such as color, motion and depth, in a 

multimodal framework based on the well-known particle filtering to leverage visual tracking 

efficiency. We have used the Earth Mover distance to compare color-based model distribution in 

the HSV color space in order to strengthen the invariance to lighting condition. Combined with an 

online adaptive update of multimodal template subspace, we have obtained robustness to partial 

occlusion. We have also proposed to integrate extracted motion features (optical flow) to handle 

strong appearance changes and prevent drift effect. In addition, our tracking process is run within 

a practical tracking-by-detection process that dynamically updates the system output. Our 

multimodal tracking system has been tested on real-world video data, and results on different 

sequences were shown. For future work, we believe our approach can be easily extended to 

handle a online manifold learning process. This would improve both detection and tracking 

processes. 
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