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Abstract—Recognizing multiple object behaviors from nonsegmented image sequences is a difficult problem because most of the
motion recognition methods proposed so far share the limitation of the single-object assumption. Based on existing methods, the
problem can be solved only by bottom-up image sequence segmentation followed by sequence classification. This straightforward
approach totally depends on bottom-up segmentation which is easily affected by occlusions and outliers. This paper presents a
completely novel approach for this task without using bottom-up segmentation. Our approach is based on assumption generation and
verification, i.e., feasible assumptions about the present behaviors consistent with the input image and behavior models are
dynamically generated and verified by finding their supporting evidence in input images. This can be realized by an architecture called
the selective attention model, which consists of a state-dependent event detector and an event sequence analyzer. The former detects
image variation (event) in a limited image region (focusing region), which is not affected by occlusions and outliers. The latter analyzes
sequences of detected events and activates all feasible states representing assumptions about multiobject behaviors. In this
architecture, event detection can be regarded as a verification process of generated assumptions because each focusing region is
determined by the corresponding assumption. This architecture is sound since all feasible assumptions are generated. However, these
redundant assumptions imply ambiguity of the recognition result. Hence, we further extend the system by introducing 1) colored-token
propagation to discriminate different objects in state space and 2) integration of multiviewpoint image sequences to disambiguate the
single-view recognition results. Extensive experiments of human behavior recognition in real world environments demonstrate the

soundness and robustness of our architecture.

Index Terms—Behavior recognition, HMM, nondeterministic finite automata, selective attention mechanism, toke propagation,

multiviewpoint image.

1 INTRODUCTION

MOTION understanding is essential for a wide variety of
vision applications, such as visual surveillance, hu-
man-machine interface, and virtual reality. Motion under-
standing problems can be categorized into the following
three levels:

Physical motion analysis. Measure 3D or 2D geometric
features of objects and analyze them along the time axis.

Object behavior recognition. Classify object motions into a
set of behavior classes which emerge from constraints on
the object’s properties and its surrounding physical
environment.

Object action understanding. Reason about intentions from
motions, e.g., gesture analysis, sign language, flag
semaphore, and so on.

In this paper, we address the visual behavior recognition

problem, especially in cases when multiple objects are

present in the scene.

1.1 Multiobject Behavior Recognition Problem

Since an object behavior observed by a camera is a spatio-
temporal pattern, the single object behavior recognition problem
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can be defined as a temporal pattern classification problem.
Much research has been done on this problem and some
applications for gesture recognition [3], [6], [7], [11], hand
sign recognition [4], [20], and lip reading [5], [21] are
already realized. However, in most surveillance tasks, we
cannot directly apply these existing methods, because
multiple objects may be present in an image frame captured
by a surveillance camera.

This multiple object behavior recognition problem is an
extended behavior recognition problem under the multiple
object condition:

e An unknown number of objects is present in each

image frame.

This condition makes the original behavior classification
problem quite difficult. In the single object behavior
classification problem, a behavior belongs to a single class
and all classes are known. This properly guarantees
similarity-based classification which first compares similar-
ity measures between the input behavior and all classes,
then decides that the pattern belongs to the most similar
class. If this method is directly applied to the multiobject
behavior recognition problem, the following problem arises.

Since an input can be a mixture pattern of multiple
behaviors, the class set should be all possible combinations
of single behavior classes, which are essentially infinite! and
nondisjoint. For example, suppose a problem classifying car

1. The observing area is limited and, hence, the number of combinations
can be bounded by using domain specific heuristics.
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Fig. 1. Difference between single and multiple object behavior
classification problems: In multiobject behavior classification problem,
the events are essentially infinite and nondisjoint. (a) Single object
behavior pattern classification. (b) Multiobject behavior classification.

behaviors to class “LR:” (from left to right) and class “RL:”
(from right to left). As shown in Fig. 1a, the problem is
simple for single car behaviors, but when multiple cars are
present in an image frame, we have to assume infinite
number of nondisjoint classes:

{¢,1 x LR,1 x RL,2 x LR,1 x LR and
1x RL,2x RL,--}.

See Fig. 1b.

That is, the multiple object condition converts the original
closed world classification problem into an open world classifica-
tion problem where the events are essentially infinite and
nondisjoint. One may think that a probability density
function can be defined on an infinite set Q2. However, for
defining the function, {2 must have a continuous topology
which cannot be defined in this problem. Also, elements of
(2 are not disjoint, and hence, the total probability P(€) # 1.
Thus, Bayesian classification cannot be directly applied to
this problem.

In the multiobject behavior classification problem, there
is no exclusive relationship between different recognition
results. For example, in a single object behavior recognition
problem described above, if an input is classified into “LR,”
then it never belongs to “RL.” However, in the multiobject
behavior recognition problem, a recognition result that the
input image sequence includes a behavior belonging to
“LR” does not impose any constraints on other recognition
results for the input, because many object behaviors may be
included in the input. Thus, we cannot use exclusive
constraints for behavior classification. For example, a large
dissimilarity measure between an input and “LR” cannot be
the evidence supporting classifying the input as “RL.” In
other words, we cannot use negative evidence, only positive
evidence. This property is inherent in this problem.

1.2 Possible Approaches

The conventional approach to this problem is image-level
segmentation, i.e., if all single object behavior patterns
present in the input image sequence are successfully
extracted, a simple classification method can be applied to
each extracted pattern (Fig. 2a). Whether the input is a
temporal pattern or not, this approach, i.e., bottom-up
segmentation followed by classification, is the standard frame-
work for multiobject recognition in computer vision. The
problems arising in this approach are:

e How to guarantee the robustness of segmentation
against occlusions and outliers.

e How to develop a consistent segmentation with
classification under a single principle.

This paper presents a completely novel approach to
solve this multiobject behavior classification problem with-
out using bottom-up spatial and temporal segmentation.
Our method is based on assumption generation and verification
(testing), i.e., by analyzing the input images, feasible
assumptions on the present behaviors are dynamically
generated, and the generated assumptions are verified by
finding the evidence (image feature) supporting these
assumptions (Fig. 2b).

Our principle is not to obtain the optimal solution but to
generate all assumptions consistent with both image data and
given behavior models. In other word, this principle is to
compute all feasible solutions of given Constraint
Satisfaction Problem (CSP) [1], where the constraints are
the image data and the behavior models. We call this
principle feasibility. A behavior analyzer based on this
principle can be realized by an architecture named selective
attention mechanism consisting of the following components:

State-Dependent Event Detector. An cvent is a predicate
representing whether an image region® called focusing
region is filled up by anomalous pixels obtained by
background subtraction or not. (Details are described in
Section 4.) Since the event detection is performed in a
limited image region, it is not affected by image variation
outside of the region (outliers). Each focusing region is
switched according to the corresponding active states in
the event sequence analyzer described below. The event
can be regarded as a positive evidence of a certain
behavior at a certain behavior stage.

Event Sequence Analyzer. A state transition model
representing the order relationship between the behavior
stages is necessary to generate the assumptions. We call
the state transition model driven by the detected events
the sequence analyzer. In this paper, we employ Non-
deterministic Finite Automaton (NFA) as a sequence
analyzer, because NFA is a simple example satisfying the
following properties:

Instantaneousness. States are instantaneously activated
whenever an input is injected. This is because 1) the
focusing region depends on active states and 2) the start
and the end of each behavior can be detected by
monitoring state activation patterns without using
bottom-up temporal segmentation.

2. In this paper, we will use a word “region” as a set of pixels.
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Fig. 2. Two approaches to solve multiple object behavior classification problem. (a) Segmentation+classification. (b) Assumption Gener-

ation+verification.

Pure-Nondeterminism. All feasible states can be simulta-
neously activated for each input to realize multicontext
search. This property is sufficient for the multiple object
behavior recognition and mnecessary to guarantee the
feasibility. The reason why we use the word pure-
nondeterminism instead of nondeterminism is that there
are two types of state transition models:

e Nondeterministic as a model, but deterministic in
optimization stage, e.g., HMM.

e Nondeterministic as both of a model and a state
machine, e.g. NFA.

This architecture iterates the following loop:

1. focusing region — event detection

2. event detection — state transition (activation)

3. activated state — focusing region.
This loop produces mutual interactions between these two
components, which tightly bind them.

1.3 State Transition Models

In this section, we examine suitability of some state
transition models for our event sequence analyzer. The
criteria are instantaneousness and pure-nondeterminism.

The most popular state transition model employed in
previous motion recognition research (e.g., [3], [4], [5], [6]) is
the Hidden Markov Model (HMM) [2]. The HMM finds the
most likely state transition path for given data sequences.
Although the HMM provides flexible classification, we
cannot employ HMM as a sequence analyzer in our
architecture. This is because:

e The HMM based classification requires an optimiza-
tion process to find the most likely state transition
path by using Viterbi or EM algorithm for a certain
length of input sequence. It implies that the HMM-
based classification does not produce instantaneous
state transition.

e As a model, the HMM is a nondeterministic
probabilistic state transition model, i.e., it does not
determine the active state for each input before
optimization. But in the optimization process, most
HMM-based systems activate a single state for each
input. It means the property of pure-nondetermin-
ism is not satisfied. Recently, higher-order HMMs
[8], [9], [10], [11] have been developed, which
commonly have compositional states, i.e., they do not
activate all possible states but a known number of
multiple states for each input. This implies that
N-context search can be realized if we know the

number of objects N. Or, a higher-order HMM
consisting of N basic HMMs can recognize M-object
behaviors (M < N) by thresholding the total prob-
abilities of Markov chains obtained by optimization.
Even by this extension, pure-nondeterminism is not
satisfied, i.e., the necessary condition for feasibility
cannot be satisfied.
The basic principle of HMM is optimality, i.e., finding the
most likely Markov chain having the maximum probability
from a bounded number of candidates. The higher-order
HMMs mentioned above are based on an extended
principle to find the optimal set of N-Markov chains under
some constraints. For finding unknown numbers of Markov
chains, we need a criterion to determine the number of
chains. The Minimum Description Length (MDL) [12]
criterion or Akaike Information Criterion (AIC) [13] can
be used with HMMs to obtain the optimal solution having
maximal probability. This approach is clearer than introdu-
cing a threshold. On the other hand, HMM-based motion
recognition systems have to use a time window for
temporal segmentation, which is necessary to handle
endless input sequences. Temporal segmentation using
time window may also affect the basic principle: Optimality
and, hence, the MDL criterion or AIC should also be used
for computing the optimal time window size and position-
ing for each behavior. However, optimal segmentation in
spatio-temporal space for an endless input image sequence
including an unknown number of multiple objects is very
difficult. As a result, most designers introduce nonoptimal
segmentation methods with HMM-based optimal classifiers
for practical motion recognition systems. Nonoptimality in
part of the system and optimality in the other mean that, as
a whole, the system is nonoptimal and no longer rests on a
clear principle of optimality.

Recently, the proposed time-delay neural network [19]
can be another candidate for a temporal sequence analyzer,
which has been successfully applied to phoneme classifica-
tion [19], hand gesture recognition [20], and lip reading [21].
A TDNN observes temporal data within a small time
window which slides over the input data while the network
makes a series of local decisions. These local decisions are
integrated in its hierarchically layered structure. A TDNN
can extract and classify patterns from nonsegmented
temporal sequences because it uses a sliding time window.
Also, it can use back propagation learning. However, since
a TDNN has a delay, it is not instantaneous and, hence, we
cannot use it as a sequence analyzer. Since a TDNN is based
on neural networks, its basic principle might be optimal
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Fig. 3. Behavior recognition system architectures. (a) Bottom-up system. (b) Bottom-up and top-down system.

classification. However, there is no proof whether optimal
temporal segmentation is realized by a TDNN or not.

The basic principle of our architecture is rather looser
than optimality, i.e., feasibility. Our behavior analyzer
produces all feasible assumptions for the input image
sequence and behavior models. This is much easier than
finding the optimal recognition result because it only
performs multiplex spatio-temporal pattern matching and
does not examine the optimality of the result. Our
architecture can use any instantaneous and pure-nondeter-
ministic state transition models. In this paper, we selected
an NFA as a sequence analyzer, because of its simplicity
and well-known properties. Although NFAs are well
studied, taught in most basic computer science classes,
and widely used, they are never used in any motion
recognition research. One may think that all discrete state
machines are sensitive and affected by noise. In spite of this,
we employed an NFA as a sequence analyzer, because we
can assume that the feasibility, i.e., multiple state activation,
can compensate for the sensitivity.

1.4 Properties and Extensions

In this section, we show the properties of the selective
attention mechanism from several viewpoints and discuss
necessary extensions.

System Architecture. Most conventional systems are bot-
tom-up systems (Fig. 3a), but selective attention mechan-
ism has both bottom-up and top-down flows (Fig. 3b). It
implies that the image-level processing can use temporal
analysis results as well as image information.

Segmentation. The selective attention mechanism seems to
be performing spatial and temporal segmentations.
Spatial segmentation is realized by introducing a focus-
ing region and all instantaneous state transition models
can segment given temporal data. That is, the systematic
combination of an event detector and a sequence
analyzer produces this property.

Speed. The selective attention mechanism iterates simple
image processing and state transition and, hence, the
processing speed is fast.

Robustness. Event detection is sensitive to noise and lack of
data because an event is a predicate which produces a
binary value. In the case of single-context search, if an
event value is flipped by noise from one to zero, then the
system may lose track of the successive event sequence.
However, multiple active states produced by nondeter-
ministic state transition can compensate for the sensitiv-
ity. For robustness against outliers, it is clear that our

system is not affected by random image variations
outside of the focusing region (outliers). If a consistent
outlier sequence similar with known behavior pattern
appears in the image sequence, our architecture simply
produces its corresponding assumption. Note that this
assumption generation will not affect the “true” assump-
tions about other behaviors.

Soundness. This is directly connected with our principle. For
example, when an object moving along the view direction
is observed by a camera, our architecture will produce
assumptions that a line of objects are moving along the
view direction. This result can be justified because there is
no evidence which negates this assumption.

Although multiple assumption generation contributes to

the robustness and soundness, it also implies ambiguity,

i.e., multiple active states involve two cases:

Unpreciseness. Active states generated by a single object.

Multiple objects. Active states generated by multiple
objects.

To discriminate between these two cases, we introduce
colored-token propagation, where a color represents an object.
By propagating colored tokens on active states, different
object behaviors can be discriminated in state space. In other
word, we have to add a minimal object discrimination
mechanism to produce recognition results from multiple
assumptions.

Based on the selective attention mechanism incorporat-
ing the colored-token propagation, a robust and sound
multibehavior recognition system can be designed. How-
ever, all appearance-based behavior recognition methods
share the limitation that 3D object behaviors are projected
onto 2D image plane and, hence, it is difficult to
discriminate multiple objects along the viewing direction.
To remove this limitation, we further extend the above
system for multiviewpoint images.

In the following sections, we describe the behavior
recognition method, multiviewpoint extension, practical
design, and experimental results, and discuss the contribu-
tions we made and future work.

2 BEHAVIOR RECOGNITION
In this section, we describe a selective attention mechanism

for multiobject behavior recognition.

2.1 Selective Attention Mechanism

In image sequences of object behaviors belonging to a class,
we can find an image variation sequence specifying the
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behavior class. For example, when we open and go out
through a door, we can find image variations at 1) the door
knob, 2) the edge of the door, and so on.

If the camera is fixed, such image variations can be
detected in specific image regions (focusing region). By using
a temporal sequence of focusing regions specifying a
behavior class, we can identify behaviors belonging to the
class by sequentially detecting image variations (events) in
those focusing regions.

In this case, focusing regions should be changed
according to the current behavior stage. This can be realized
by linking the focusing regions to the states in the sequence
analyzer (NFA). That is, detected events activate states in
the NFA, and the event detector changes its focusing
regions according to the activated states. We call this
bottom-up and top-down behavior identification the selec-
tive attention mechanism (Fig. 4). A behavior identifier based
on the selective attention mechanism is described below:

A behavior identifier is a simple classifier that accepts
image sequences in a behavior class and rejects those in
other classes. The behavior identifier consists of 1) a
focusing region sequence, 2) a sequence analyzer, and
3) an event detector:

Definition 1 (Focusing region sequence). A focusing-region
sequence f(q) is a sequence of image regions where event
detection is performed at state q. Formally, f(q) is defined as a
mapping from state space () to power set B(I) of image space I
consisting of pixels:

[+ Q@=B(I),
ZUhETE’ 1= {(m7y)|Xmm <z S Xmama Ymin S Yy S }/ma;v}/ (Zi’ld

KXonin, Xmaz, Ymins Ymaz are the minimum and maximum
coordinate values for = and y.

A practical method to obtain a focusing region sequence
from training samples is described in Section 4.

Definition 2 (Sequence Analyzer). The sequence analyzer
(NFA) is represented by (Q,q°, %, 6, F), where

Q : finite set of states,® Q = {q0,¢", -+, ¢, ¢},
q": initial state ,¢° € Q,
X finite set of event codes,
o: state transition function, 6(¢q,0) : Q X ¥ +— Q,
e  F: finite set of final states, F = {q™, q"“'}.
When an input sequence o; € X(i =0,1,---) is given, the
active state p; at the ith input is defined by 6 as:

0
Po = q, 1
{ Pi+1 = 6(/017 Ui)a ( )
Note that:

The state transition is not applied to those states in the final
state set I'.

6 may have multiple values for a single input. This is called
nondeterministic state transition.

A state g™ represents the final stage of a behavior, where the
input sequence is accepted. Hence, ¢™ is also represented by

acc

A state ¢ represents that the input is rejected.

Definition 3 (Event Detector). An event is a predicate
representing the presence of an image variation in a focusing
region. An event within a focusing region f of image I is
denoted by e(f,I)(e {0,1}). If an event is detected,

e(f,I) =1, otherwise, e(f,I) = 0.

An event detector checks image variations within multiple
focusing regions corresponding to successive states and
combines obtained events into an event code. For example,
an event code of length two at state p is represented by:

o = e(f(p), 1) - e(f(succ(p)), 1), (2)
where represents the event combination operator, and
succ(-) the successor function, i.e., if p=q", then
suce(p) = ¢

u

The event detection method is detailed in Section 4.

Definition 4 (Behavior identifier). The components described
above are assembled into a behavior identifier in the following
manner:

o The event code is used as an input to the sequence
analyzer,

e  The active states of the sequence analyzer determine
the focusing region,

e The focusing region is used in the event detector.

For example, in the case that the event code length is two,
the active state p; at the ith input is defined as:

Lo = q07
piv1 = 06(pi,04), (3)
o =e(f(pi), i) - e(f(succ(pi)), ;).

If a final state ¢"° is activated, then the input sequence is
identified as the behavior.

For an event code length of two and p; = ¢*, pi+1 can be
determined by e(f(¢"),I;) and e(f(¢"*!),I;), because an
event e(f(¢"),I;) = 1 represents the evidence for p;;1 = ¢,
and e(f(¢"*'),I;) = 1 represents p;.1 = ¢**!. Such homo-
geneous state transitions can be described by a state

3. A state sequence (¢%...,q™ represents an abstracted time axis, i.e.,
each state in this sequence corresponds to a behavior stage. See Section 4.



TABLE 1
State Transition Table at p; = ¢* for Event Code Length = 2

e(f(qk)7 ;) - e(f(qkﬂ): 1;) Pit1
0-0 gl
0-1 qk+1
1-0 qk
1-1 qF or ¢"!

transition table. A simple state transition table is shown in
Table 1.

Here, an event code o; = 1-1 will cause a nondetermi-
nistic state transition from ¢* to both ¢* and ¢**!. This
property enables parallel tracking of all feasible event
sequences. If all the past event codes are 1 - 0 or 0 - 1 and the
current event code is 0 - 0, there will be no active state in the
sequence analyzer. However, since the focusing region
obtained by our learning method shown in Section 4 is
always smaller than the object apparent size at each
behavior stage for all training samples, at least one focusing
region will be in the object silhouette on the image plane at
each behavior stage. As well, for continuous object
behaviors, the focusing regions of neighboring states are
similar. Hence, in practice, two or more focusing regions are
included in each object silhouette and 1 -1 event codes are
frequently produced. This situation will produce redundant
active states, but also, a 0 - 0 event code will be produced by
useless active states without evidence, which will inactivate
the useless states. Then, the combination of redundant state
activation and useless state inactivation will produce appro-
priate system behavior because useless states are pruned.

2.2 Colored-Token Propagation

By using the selective attention mechanism, multiobject
behaviors can be identified from a single image sequence. In
this mechanism, however, multiple states are simulta-
neously activated for a single object. Since each active state
represents a candidate for an object behavior, multiple
active states can be interpreted as 1) multiple objects at
different behavior stages, or 2) a single object at uncertain
behavior stages. This ambiguity prevents us from recogniz-
ing the number of objects present in the scene.

To disambiguate between these interpretations and
count the number of objects, we have to link active states
to objects. In this paper, we introduce colored-tokens to
represent this correspondence where a color is regarded as
an object. By assigning and propagating colored tokens,
different object behaviors can be discriminated in the NFA.

2.2.1 Token Assignment

In the case of continuous object behaviors, since the
focusing regions of neighboring states are similar, neighbor-
ing contiguous states are simultaneously activated for a
single object. Hence, the contiguous active states are
considered to be activated by an object.

Based on this heuristic, colored token assignment can be
designed as follows:

A neighboring active state set C is a subset of active states
connected by state transition function 6, which satisfies:

Vo (p e C= (8(p,0) € O))V (8(p,0) €C = peC). (4)

An active state set P can be decomposed into disjoint sets
of neighboring active states C¥, i.e., P = UC’, and C* N CV =
¢ for any C* # (V.

By marking all states in C* by a token having a single
color 2¥ € Z, active states can be identified with objects,
where Z represents the integer set, and C* # Ci<=-2F # 2.

2.2.2 Token Propagation

In the token assignment procedure described above,
however, the number of token colors may vary with time,
even if the number of objects is constant. To maintain the
consistency of the assigned token colors along the time axis,
assigned tokens should be propagated simultaneously with
the state transition.

Since state transitions represent progress of object
behaviors, tokens should also be propagated by the state
transition function é. That is, tokens assigned to (Yare
propagated to those C¥, ;s satisfying:

U U ép,0) | nCE # 0, (5)

o€y pGCK

where ¢ is empty set, and C/ represents a neighboring
active state set at ith input. In this case, we call that ¢/ has a
link to CF, ;. _

If C7 has a single link, all tokens assigned to C! are simply
propagated through the link. But, when € has multiple links,
we should not propagate the copies of tokens through those
links because any active states in different C*s should not
have the same token simultaneously.

Based on the discussion above, tokens should be

propagated as follows (Fig. 5):

e When C/ has no links, tokens are discarded.
e When (! has a single link, tokens are propagated
through the link.
e  When C/ has multiple links, tokens are divided into
disjoint sets, which are distributed through the links.
If the number of links is greater than that of assigned
tokens, new tokens are generated after the propaga-
tion. Any division minimizing token generation is
applicable®*.
Based on the discussion above, colored tokens are
dynamically assigned and propagated by the following
procedure:

Step 1. For each Cf € P, if no token is assigned, a new
token is generated and assigned to it.

Step 2. Compute state transitions for I; and form {CF,}
from activated states p;.1.

Step 3. Propagate tokens from {C/} to {CF,,} through the
links.

Step 4. Count the token colors at ¢*“. Increment 7 and go to
Step 1.

4. This procedure doesn’t guarantee the tracking of independent objects
along the time-axis. However, it is capable of counting the number of
objects.
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2.3 Behavior Classification

To recognize object behaviors, we have to classify behavior
patterns. In the multiple behavior classification problem, a
classification result does not exclude other results because
there can be multiple objects. This implies that no inhibition
mechanism should be employed in the classifier. Hence,
multiple behavior classification can simply be realized by
parallel behavior identification.

This classification mechanism can be designed by intro-
ducing an initial state ¢ and e-state transitions® from ¢° to
initial states of independent identifiers as shown in Fig. 6.

The classifier constructed in this manner can be regarded
as an NFA and event detectors. In this NFA, when the
number of active states increases, the processing speed
slows down. This property prevents us from realizing
real-time behavior recognition system. Fortunately, both the
NFA and the event detectors can be transformed into an
equivalent deterministic model that is not affected by the
number of activated states as described below.

An NFA can be converted into its equivalent determi-
nistic finite automaton (DFA) by a systematic and formal
method. The details of this method is described in typical
textbooks, e.g., [16]. An example of this conversion is
illustrated in Fig. 7. In this figure, we can notice the
converted DFA has states which consist of combinations of
original states in the NFA. Also, the focusing regions of the
event detector can be reorganized by the set operation
according to the transformation from NFA to DFA.

3 MuLTIVIEWPOINT BEHAVIOR RECOGNITION

Appearance based behavior recognition methods share the
limitation that 3D objects along the viewing direction are
projected to similar regions on the 2D image plane, and it is
difficult to distinguish these objects only by analyzing the
image. In this case, many states in the NFA are activated
and the number of objects cannot be recognized correctly
even if we apply colored token propagation.

A simple approach to solve this problem is to extend the
behavior recognition method to use images from multiple
viewpoints. To recognize object behaviors from multi-
viewpoint images, we have to integrate information across
views. This integration can be categorized into the follow-
ing three levels (Fig. 8):

5. The e-state transition means a state transition caused by null input.

Image-level integration. Multiviewpoint images are com-
bined into a single image and the recognition system
takes it as input.

Event-level integration. Independently detected event
codes from multiviewpoint images are integrated into
an event code, which drives a sequence analyzer.

State-level integration. Independent behavior identifica-
tion systems mutually interact to inhibit redundant state
transitions.

Image-level integration is the simplest method for utilizing

multiviewpoint images. But, this method cannot verify the

cooccurrence of events in different viewpoint images, i.e.,

this method does not take into account that different events

in multiple images can actually be different views of the
same event.

In event-level integration, event codes detected at
different viewpoints are integrated by a bitwise “AND”
operation, which checks the cooccurrence of events corre-
sponding to an event in 3D space.®

State-level integration inhibits redundant active states
according to feasible state combinations that represent valid
combinations of states in identifiers at different viewpoints.
Feasible state combinations can be learned from training
samples as shown in Section 4. When the time intervals
corresponding to states are synchronized among the
identifiers at different viewpoints, this integration is
equivalent to event-level integration. That is, this integra-
tion includes the event-level integration as a special case.

The feasible state combinations can be represented by a
set of points in state product space of identifiers at different
viewpoints (Fig. 9). This integration can be regarded as an
augmentation of the domain of state transition and token
propagation from states to feasible state combinations.

4 A PRAcCTICAL DESIGN

By using background subtraction, the anomalous region at
time ¢ can be obtained as:

a(t) ={(z,y) | (z,y;t) = Dyg(x, )| > v}, (6)

6. “An event in 3D space” means a variation of 3D scene that is detected
as simultaneous image variations in multiviewpoint images. In this
detection, we do not use explicit geometric constraints between the
multiple viewpoints because the simultaneous image variation pair
implicitly includes the geometric constraints which can be learned from
training data.
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where I(-,-;t) represents the input image at time ¢, I,(-,-) a
background image, and v is a threshold. Here, we describe a
practical event detection and learning method using
anomalous features.

Event detection. An event can be detected when anomalous
pixels fill the focusing region, which is defined as:

f=¢or l/na®l < g )

e(f,1(1)) = { 1, 7

0, otherwise,
where 6 (0 < 6 < 1) represents a threshold, f the focusing
region, and ¢ the null focusing region.

Focusing region at initial state. We assign the null focusing
region ¢ to state ¢°. This guarantees that the current state
set always includes the initial state ¢’ as a gatekeeper
which always checks events at f(¢') to produce event
codes. Hence, we can recognize successive behaviors by
using this configuration.

Learning a focusing region sequences. A focusing-region
sequence can easily be acquired from training samples of
anomalous regions a(t). When n samples of anomalous
region sequences a’(t)(i = 1,2, --,n) in a class are given,
the time axes of these samples can be normalized so as to
maximize the following matching measure by dynamic
programming:

t)Na'(ri(t
o) 0 (0], .
la(t) U a(7'(2))|
where a(t) is the standard sample of the class, 7 is a
monotone increasing function, and |-| represents the

Fig. 7. An example of transformation from NFA to equivalent DFA.
(a) NFA. (b) Equivalent DFA.

number of pixels. The result of this process depends on
having a good standard sample a(t). In practice, to get a
good result, a long and wide a(t) should be used as a
standard sample. A longer a(t) than a(¢) for all ¢ will not
cause frame merging in a'(7;(t)), ie., 7(t) >t and a
wider a(t) than a'(t) can keep the intersection result
la(t) Na'(7i(t))| bigger.

From the normalized anomalous region sequences, the
common anomalous region sequence among the training
samples f(t) can be extracted as:

)= a0, ©)

The common anomalous region sequence is represented in
the normalized time axis ¢. Intervals along this time axis

D
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Fig. 8. Three levels of integration. (a) Image-level integration. (b) Event-
level integration. (c) State-level integration.
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Fig. 10. Method to obtain common anomalous region sequence: A common anomalous region sequence is obtained by intersection of temporally

normalized training samples (anomalous region sequences).

corresponds to the states of an NFA. If a state g corresponds
to a given time interval ¢, < t < t,, the focusing region f(q)

at state ¢ is computed as:
(10)

For determining these time intervals, we employ a
method described below:

This method is designed to minimize the number of
active states by providing two criteria:

1. Focusing region should not be empty and
2. maximize the difference between neighboring focus-
ing regions. The algorithm is described below:

Step 1: (initialization) j = 0, q; =1, N =T, where T is the
number of sampling points on normalized time axis t.
Step 2: If V; is less than or equal to the specified number of
states, then stop. Otherwise, find ¢ which maximizes the
similarity measure between f(¢}) and f(¢;™"):

(@) N g™
£ U g1

Step 3: If the maximum similarity measure is less than a
given thre_shold O, then stop. Otherwise, Nj;; = N; — 1 and
merge f(q;) and f (q;-“) by the following equation:

fd), k<i
f(q?+1) = f(q?)ﬂf(q,’f“), k=1. (11)
f@™h k>

Step 4: j = j+ 1, and go to Step 2.

The resulting states, their number, and corresponding

focusing regions are ¢}, N; , and f(q}), respectively.

Learning Feasible State Combinations. For multiviewpoint
behavior recognition, feasible state combinations must be
learned from training samples. By using standard samples
of a®ml(t), -, a®"N(t) for the same behavior where the
time axes are synchronized, we obtain common anom-
alous region sequences f"!(t),---, fmN(¢). Note that
these sequences share a common time axis. When we
compute focusing region sequences "™ (q) using above
described method, we can refer to the corresponding time
intervals and, hence, the feasible state combinations can be
obtained by coupling states whose time intervals are
overlapping on the common time axis. The time intervals
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Fig. 12. Feasible state combinations from two common anomalous region sequences: From these time intervals, feasible state combinations shown

in Fig. 9 will be obtained.

corresponding to the feasible state combinations in Fig. 9 is
illustrated in Fig. 12.

5 EXPERIMENTS

Here, we show experimental results of focusing region
learning, recognizing human behaviors entering and exiting
through a door by using one and two cameras, and total
recognition performance. These behaviors are named “enter”
and “exit.” For each behavior class, 20 training image
sequence pairs, i.e.,, 40 image sequences of single object
behaviors taken by two cameras (camera 1 and camera 2), are
used for learning focusing regions. Examples of these
training data captured by cameral are shown in Fig. 13.

5.1 Learning

The anomalous regions are obtained by background
subtraction with fixed intensity difference threshold 20.
By applying temporal normalization and intersection, the
common anomalous region is computed. The focusing
region is generated from the common anomalous region
sequence by intersecting them within the time interval
obtained by the algorithm shown in Section 4 with the
minimal number of states: 28 and the similarity threshold ©:
10 percent. The resulting focusing region sequences for
camera 1 are shown in Figs. 14 and 15. In this process,
feasible state combinations in state product spaces for both
behaviors are also obtained. The result is shown in Fig. 16.

5.2 Recognition Example by a Single View

An example of the test data taken by a single camera and its
corresponding state transitions are shown in Figs. 17 and 18,
respectively. InFig. 17, two persons enter into the room. These
people walk along the view direction, then turn, and walk
right. Its corresponding state transitions of “enter” and “exit”
are shown in Fig. 18. In this figure, the horizontal and vertical

axes represent time and states from initial to final, respec-
tively. The gray and black regions represent activated states
with different token colors. This figure shows that while these
persons move along the viewing direction, almost half of the
“enter” automaton states are activated. This corresponds to
an assumption that many persons are entering the room.
While the persons move from left to right, their correspond-
ing thin state transition paths appear from the thick activated
states. One can find that a new token color is generated when
the first person starts moving from left to right. On the other
hand, states of “exit” automaton are almost quiet. A small
number of states near the initial state are activated when the
persons reach the right side of the image frame because the
anomalous region at the end of “enter” is similar with that of
“exit” at the beginning. By counting token colors at the final
states of these automata, the system recognizes that two
“enters” have occurred.

5.3 Recognition Example by State-Level
Integration Using Two Views

A test data and its corresponding recognition result using
two cameras are shown in Figs. 19 and 20. In this test data,
two “enters” and two “exits” are performed with some
outliers. Fig. 20 shows the result of state-level integration,
which shows four state transitions corresponding to the
combinations of {“enter,” “exit”} and {“camera 1,”
“camera 2”}. In this figure, token colors are omitted, but
the activated states and inhibited states are discriminated
by black and gray regions, respectively. The state inhibition
is done by checking the co-occurrence of active states of
automata corresponding to “camera 1”7 and “camera 2”
using feasible state combinations shown in Fig. 16. The state
transitions without inhibition (black and gray regions) are
quite messy, but the inhibited state transitions (black
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— time

Fig. 13. Examples of training data: Top and bottom in each behavior are observed gray-level images and anomalous regions obtained by

background subtraction with intensity threshold 20. (a) “Enter.” (b) “Exit.”

0 Initial State

Fig. 14. Focusing region sequence of “enter” for camera 1: Left figure shows focusing region sequence in a 3D space spanned by image space and

state space and right images are the slices at certain states.

regions) are much cleaner, and the system successfully
recognizes correct results: two “enters” and two “exits.”

5.4 Total Performance Evaluation

For measuring the total performance, we used 60 test data,
i.e., 120 image sequences of multiple-object behaviors. Note
that 1) the 20 training data and 60 test data are disjoint and

2) there is no test data which consists of a single object
behavior or nonoverlapped multiple object behaviors.
Possible methods are nonintegrated classifications using
1) camera 1, 2) camera 2, and integrated classifications at
3) image level, 4) event level, and 5) state level. These
methods are applied to all of the test data.
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Fig. 15. Focusing region sequence of “exit” for camera 1: Left figure shows focusing region sequence in a 3D spanned by image space and state
space and right images are the slices at certain states.
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Fig. 16. Obtained state product spaces from training samples for (a) “enter” and (b) “exit”: In each graph, the horizontal and vertical axes represent
state spaces for camera 1 and 2, respectively. The gray region shows feasible state combinations.

— time

Fig. 17. An example of 2 “enter’s: Top and Bottom are oberseved gray-level images and anomalous regions obtained by background subtraction with

intensity threshold 20.

The classification results are summarized in Fig. 21. In
each graph, the vertical axis represents the number of data
which are correctly recognized in both senses of “classifica-
tion” and “number of objects.” The horizontal axis
represents the threshold 6 for event detection. From these
graphs, we can notice that event and state-level integrations
are more effective than the others. State-level integration
includes event-level integration as a special case. However,
the latter is slightly superior to the former in this result. One
explanation for this might be that each class has been
excessively specialized at the learning phase in state-level

integration because of its flexibility. In other words,
20 training data are insufficient for generalizing these
behavior classes for state-level integration.

6 DiscussioNs AND FUTURE WORKS

Since the selective attention mechanism is related to many
other concepts and there still remain unsolved problems,
we will discuss them to clarify future work.

The most distinguishing point of this architecture from
other existing method is the difference between the
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Fig. 18. State transitions of two NFAs corresponding to “enter” and “exit” for input shown in Fig. 17: The horizontal and vertical axes represent time
and state space from initial (bottom) to final (top) states. The gray and black regions correspond to the active states having different colors.
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camera?2

Fig. 19. An example of complicated behaviors: two “enters,” two “exits,” and outliers: Top and bottom in each behavior are observed gray-level
images and anomalous regions obtained by background subtraction with intensity threshold 20.
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Fig. 20. State transitions of NFAs corresponding to the combinations of {“enter,” “exit"} and {“camera 1,” “camera 2"} for input shown in Fig. 19: In
each graph, the horizontal and vertical axes represent time and state space from initial (bottom) to final (top) states. The gray and black regions

corresponds to inhibited and feasible states.

principles: feasibility and optimality. In the multiobject
behavior recognition problem, the number of actual beha-
viors is unknown and, hence, bottom-up segmentation is
required for finding “optimal” recognition result. However,
bottom-up segmentation can be affected by occlusions and
outliers. This paper shows a way to avoid this dilemma, i.e., if
we formalize the problem as a Constraint Satisfaction
Problem (CSP) [1] to compute all feasible solutions consistent
with given behavior model and input image data, then the
problem can easily be solved. Although the purpose of most
CSPs is computing only one solution, i.e., satisfiability, our
approach is to compute all feasible solutions to realize

multiobject behavior recognition. Essentially, all feasible
solutions are the intersection between models corresponding
to given constraints. By using a simple representation of
constraints, i.e., behavior model (focusing region sequence
and NFA) and image data (anomalous region), we can
directly compute all feasible solutions in a model space
spanned by image and state spaces.

The selective attention mechanism actively generates all
feasible assumptions (active states in NFA) and verifies
them by finding their supporting evidence (events) in the
images. From this viewpoint, the NFA can be regarded as a
degenerate Assumption-based Truth Maintenance System
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Fig. 21. Total performance evaluation results obtained by changing the event detection threshold 0: (a) Cameral, (b) camera2, (c) image-level
integration, (d) event-level integration, and (e) state-level integration. In each, the horizontal and vertical axes represent threshold  and number of
data which are correctly recognized in both senses of “classification” and “number of objects.”

(ATMS) [22] that works as a database keeping possible
assumptions for multicontext reasoning. An ATMS has a
lattice structure to represent the justification relationship
between the assumptions. However, we use a linear NFA
because the “justification” relationship between the as-
sumptions on behavior stages is essentially linear. The
ATMS can represent exclusive relationship between the
assumptions. Our system can also represent the exclusive
relationship between the assumptions using token colors,
i.e., activated states having the same colors are exclusive,
and others are not.

Our system is also similar with lexical analyzers that
segment and classify predefined symbols from 1D input
character streams. The difference from the lexical analyzers
is that our system accepts 3D spatio-temporal streams
including overlapped spatio-temporal patterns. This is
realized by introducing the focusing region and event
detection. Similar with the lexical analyzer, our architecture
can parse those behaviors obeying a Regular Grammar (RG)
which is a subset of a Context Free Grammar (CFG). There
exist some methods [14] [15] that can parse those behaviors
obeying a CFG. With the analogy of formal language
analysis, i.e., higher-level parsers can follow the lexical
analysis, we can build up a CFG parser on our system. The
essential problem of this approach is how to realize the
mutual interaction between the higher and lower units,
which may make the system robust. In the other approach
to parse CFG behaviors, we can replace the NFA by a
nondeterministic Push-Down Automaton (PDA). This is
because our architecture only requires instantaneous and
pure-nondeterministic state transition model.

The discussion above leads us to a question: What is the
essential difference between the behaviors or motions

obeying a RG and a CFG? We cannot answer this question
based on formal language theory; however, the following
assumption might be valid by the analogy of language
analysis: Those object motions constrained by its surrounding
environment (behavior) obey RG, and those motions consists of
behaviors obey CFG. In this case, the CFG motions must
include RG behaviors constrained by surrounding environ-
ment. However, there is interesting research that shows a
varieties of motions can be recognized within RG [7]. In this
research, a Parametric Hidden Markov Model (PHMM) is
used to recognize the variations of known motions. The
PHMM can be used for determining global variables while
analyzing motions. For example, a PHMM based motion
analyzer can recognize a pointing action and estimate the
pointing direction simultaneously. This implies that it can
recognize a variety of pointing actions with different
directions. This result shows the degree of freedom of RG
motions are much higher than the behavior addressed in
this paper.

Hence, an extension of our method to recognize a wider
variety of behaviors should be addressed in future work.
The first target in this extension is position free behaviors.
One reason why our current system can not be applied to
position independent behaviors is that the event detection
result is too simple. For recognizing position independent
motions, the system should use a structured event detection
result which has enough information to specify behavior
stages independent of the object position. An example of the
structured event codes is used in event-level integration,
which can be regarded as a cue for this work.

By modifying the learning method, the selective atten-
tion mechanism can recognize discrete variations of
behaviors, e.g., training samples of passing through the
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door where in half the door already open and the door is
closed in the rest. If we apply our learning method
described in Section 4 directly to these samples, focusing
regions specifying the behavior might be discarded. In this
case, the training set should be divided into two subsets,
then the behavior identifier can be obtained by the parallel
combination of two identifiers trained by these subsets.
Parallel combination can be further simplified if these
training sets includes common subbehaviors. That is,
semantic class definition is not equivalent to the class
definition according to behavior pattern similarity. How-
ever, there can be a mapping between them.

Since this method uses simple background subtraction,
anomalous regions can be affected by illumination changes.
Some research on stabilizing the background subtraction
using flexible background model and its maintenance [17]
[18] can be utilized for solving this problem. One important
issue in this extension is that the behavior recognition
results can be utilized for background model maintenance.
Also, we can apply the background subtraction with an
active camera by using the method proposed in [23]. Hence,
we can also extend the behavior recognition system with
active cameras.

7 CONCLUSION

In this paper, we addressed the problem of recognizing
multiple object behaviors from nonsegmented image
sequences. This problem is difficult because optimization
based motion classification requires bottom-up segmenta-
tion of input image sequences before classifying object
behaviors, and segmentation can be affected by noise and
outliers. This paper shows a quite different approach from
segmentation followed by classification, i.e., assumption genera-
tion and verification. In this approach, we proposed an
architecture, the selective attention mechanism, based on the
principle of feasibility: generating all assumptions consistent
with given behavior models and the input image sequence.
The proposed architecture is a systematic combination of an
event detector and an event sequence analyzer; the system
generates all feasible assumptions about object behaviors
without using bottom-up segmentation.

Based on this mechanism, colored token propagation is
introduced to distinguish objects. Furthermore, extended
recognition methods integrating multiviewpoint image
sequences are proposed and examined by extensive experi-
ments of human behaviors. In this experiment, we have
confirmed that event and state level integration methods have
good performance even for complex behaviors with outliers.

As we discussed in Section 6, the selective attention
mechanism is related to other many concepts in computer
science and can be the foundation for novel research. We
hope that this paper provides an idea to establish a new
frame-work in the field of computer vision.
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