
1

PCクラスタを用いた実時間３次元形状復元のための
並列パイプライン視体積交差法

ウ 小 軍 † 松 山 隆 司††

コンピュータビジョンの分野において, 人物動作のモニタリングは基本的なタスクの一つである. 動
作解析, マンマシンインタラクション, あるいは 3D ビデオなどといったさまざまな場面で, 2 次元の
観測画像のみならず, 対象の詳細な 3 次元形状情報が望まれる. 特に, ダイナミックなマンマシンイン
タラクションや仮想空間での臨場感高い共同作業支援などには, 実時間 3 次元形状復元は不可欠であ
る. 本論文では, 形状復元の計算量を削減するため, 視体積交差法に基づき, 高速かつ安定に計算可能
な 3 基準平面視体積交差アルゴリズムを提案する. 同時に, 当アルゴリズムを並列化し, PC クラス
タを用いた並列計算による速度向上が図られた. さらに, 計算効率をあげるため, 並列パイプライン処
理モデルを導入した. 並列パイプラインの実装に関して, スレッドツリーモデルを提案し, それによっ
て, 計算量に応じたスレッドスケジューリングが容易になり, ダイナミックに変化する対象姿勢によ
る形状復元の計算量変動にも安定したスループットが維持できるようになる. 評価実験によって, ボ
クセルサイズが 5mm ×5mm ×5mm の場合は, 約 6 fps, 10mm × 10mm × 10mm の場合は 20
fps 以上のパフォーマンスが確かめられた.

Parallel Pipeline Volume Intersection for
Real-Time 3D Shape Reconstruction on a PC Cluster

Xiaojun Wu † and Takashi Matsuyama††

The human activity monitoring is one of the major tasks in the field of Computer Vision.
Not only the images in appearance, but also the fine 3D shape of the target are desired for
studies like motion analysis, man-machine interaction technologies, the 3D video technologies
and so on. Especially, to realize multi-modal and dynamic interactions between human-
beings and machines, or to realize the remote collaboration in the virtual reality, it is desired
to acquire the 3D shape in real time. In this paper, we focus on the real-time 3D shape
reconstruction of a moving person by accelerating and parallelizing the volume intersection
method on a PC cluster. Ideas are proposed in aspects of both the fast algorithm and the
implementation model to realize the efficient parallel pipeline on a PC cluster. While the
plane based volume intersection accelerates the shape computation efficiently, the efficiency
will be damaged by certain camera layouts, where the viewing direction is nearly parallel to
the base plane. To avoid such break down, we extend the plane based volume intersection
to the 3-base-plane volume intersection so as that the computation can be carried out stably
and efficiently for arbitrary camera layouts. The parallelization of the 3-base-plane volume
intersection is also conducted for the parallel computation on a PC cluster. On each PC the
pipeline processing model is introduced to achieve the maximum throughput. Since the 3D
shape of the target changes with the motion, the computational complexity changes in real
time. To keep high throughput while the computational complexity changing, we propose the
tread tree control model for the implementation of the parallel pipeline, where each pipeline
stage is implemented as one thread and all threads are organized as a thread tree. The dy-
namic scheduling of the threads is realized by changing the structure of the thread tree. By
dynamically scheduling the threads according to the estimated computational complexity, the
throughput of the pipeline can be achieved as high as possible. From the performance evalu-
ation results, for the voxel size of 5mm × 5mm × 5mm, the throughput of about 6 volumes
per second is achieved on a PC cluster of 27 dual Pentium III 1Ghz powered PCs, and for the
voxel size of 10mm × 10mm × 10mm, the rate of over 20 volumes per second is achieved.

† NTT サイバースペース研究所
NTT Cyber Space Laboratories

†† 京都大学大学院情報学研究科
Graduate School of Informatics, Kyoto University

1. Introduction

The human activity monitoring is one of the ma-



2

11

22

Base Slice

Base Silhouette

Fig. 1 Plane-based volume intersection method

jor tasks in the field of Computer Vision. The

detailed 3D shape of the human motion is re-

quired in real time for the motion analysis, the

action understanding and so on. The techniques

of the 3D shape modeling are also desired to real-

ize the free viewpoint video or the 3D video con-

tents1)∼4),6),7),9)∼11). Furthermore, to realize dy-

namic interactions between human-beings and ma-

chines, or to realize the high reality remote collab-

oration in the virtual space8), the 3D shape of the

target must be acquired in real time. Therefore, we

focus on the real-time 3D shape reconstruction of

a moving person.

The volume intersection method(VIM)5) is adopted

as the basic algorithm for the full 3D shape re-

construction from multi-viewpoint silhouettes. For

the real-time computation, we propose the plane

based volume intersection12) to accelerate the VIM,

where the 3D space is decomposed into parallel

planes(slices) so that the shape are calculated as

the cross-sections on each slice. The algorithm is

summarized as following, and is illustrated in Fig-

ure 1.

( 1 ) Base Silhouette Generation(BSG) :

Project the object silhouette observed by

each camera onto a common base plane (Fig-

ure 1 left, 1©).

( 2 ) Visual Cone Generation(VCG) : Project

each base plane silhouette onto the other par-

allel planes (Figure 1 left, 2©).

( 3 ) Visual Cone Intersection(VCI) : Com-

pute 2D intersection of all silhouettes pro-

jected on each plane (Figure 1 right).

While the plane based volume intersection is effi-

cient at reducing the computational complexity of

the volume intersection, it is obvious that the com-

putation of the BSG will break down if any input

screen of the multi-viewpoint cameras is nearly per-

pendicular to the base plane. That is, in case of the

base plane being statically determined, the compu-

tation can not be carried out for arbitrary camera

layouts.

In this paper, we propose the 3-base-plane vol-

ume intersection, which is an extension of the plane

based volume intersection. By this extension, not

only the computational breakdown due to the cam-

era layout can be avoided, but also the upper bound

of the computational complexity of the BSG can

be estimated, which is important for the real-time

computation.

We also show the parallel algorithm for the 3-

base-plane volume intersection, and propose the

parallel pipeline processing model on a PC cluster

to get high throughput of the volume intersection.

Since the 3D shape of the target changes with the

motion, the computational complexity changes in

real time. To keep high throughput while the com-

putational complexity changing, we propose the

tread tree control model for the implementation of

the parallel pipeline, where each pipeline stage is

implemented as one thread and all threads are or-

ganized as a thread tree. The dynamic scheduling

of the threads is realized by changing the structure

of the tree. By dynamically scheduling the threads

according to the estimated computational complex-

ity at each time, the throughput of the pipeline can

be achieved as high as possible.

In what follows, we first describe the 3-base-plane

volume intersection and its parallelization in de-

tails. After that, the thread tree control model is

shown. Experiments of tuning the executing or-

der of the threads by changing the structure of the

thread tree are also conducted. At last, the perfor-

mance evaluation experiments are shown to prove

the efficiency of the proposed algorithm and the

implementation model.

2. The 3-Base-Plane Volume Intersec-
tion

As mentioned before, the plane based volume in-

tersection method can exhibit a serious problem:

when the optical axis of a camera is nearly parallel

to the base plane, the size of the projected silhou-

ette becomes very huge, which damages the com-

putational efficiency. In the worst case, i.e. when

the optical axis becomes parallel to the base plane,

the projection cannot be computed and the method

breaks down.

In the case of static camera arrangements, it is

possible to select the base plane so that the worst

case can be avoided. But the question of which base

plane is optimal for computation remains open. In

the case of dynamic camera arrangements, we have

to extend the method to keep the computational



3

S

B

Fig. 2 Projection from an input image screen to the base

plane

efficiency as well as avoid the worst case.

Here we first analyze how the computational cost

changes depending on the base plane selection and

then propose an augmented plane-based volume in-

tersection method for flexible camera-work setup.

Suppose an observed object silhouette on an in-

put image screen S is represented as a circle of ra-

dius r, which is projected onto the base plane B as

an ellipse (Figure 2). Let θ, f , l denote the dihedral

angle between B and S, focal length, and the dis-

tance from the projection center to B respectively.

The area size s of the projected silhouette becomes:

s = πr2 · R(θ, f, l), (1)

where R(θ, f, l) =
l2

f2 cos θ
.

Thus, the projected silhouette is expanded in the

ratio of R(θ, f, l). It is clear that R is monotoni-

cally increasing with θ and diverges to infinity at

θ = π/2, which corresponds to the worst case.

In the case of a static arrangement of n

cameras, let {f1, f2, . . . , fn}, {v1,v2, . . . ,vn} and

{p1,p2, . . . ,pn} denote the focal lengths, view di-

rections and positions of the cameras respectively.

The base plane can be represented by its normal

vector D = (Dx, Dy, Dz)
t from the origin of the

world coordinate system. Given the base plane, θi

and li for each camera can be calculated from vi, pi

and D. Let {a1, a2, . . . , an} denote the area sizes of

object silhouettes observed by the cameras. From

equation (1), the area size of each projected silhou-

ette becomes:

si = ai · Ri = ai ·
l2i

f2
i cos θi

(2)

So the optimal selection of the base plane can be

achieved by solving

D = argmin

n∑

i=1

si. (3)

Note firstly that it is hard to solve this prob-

lem analytically, because we cannot represent

{a1, a2, . . . , an} in analytical forms. Moreover,

since {a1, a2, . . . , an} change dynamically depend-

ing on the object action, the optimal base plane

selection should be done frame by frame, which in-

troduces a large overhead. Note also that if we

changed the base plane frame by frame, we would

have to map each reconstructed 3D volume to a

common coordinate system since the 3D volume is

represented in such coordinate system that is de-

fined by the base plane. This coordinate transfor-

mation would also introduce a large overhead.

In4), to synthesize free-viewpoint video of the

sports, the plane-based volume intersection is con-

ducted. To avoid the above breakdown of the pro-

jection, the direction of the parallel plane changes

dynamically keeping perpendicular to the viewing

direction. Since in4), no explicit 3D shape is de-

sired, they do accelerate the projection by decreas-

ing the plane number and changing the space res-

olution according to the viewpoint of the watcher.

In our case, however, the full 3D shape is desired

in real time, any non-linear coordinates conversion

that increase the computation complexity should

be avoided.

2.1 Augumented PPPP Algorithm — 3-

Base-Plane Algrorithm

To avoid the case that the determined base plane

is parallel to the direction of the camera, we can

also determine multiple candidate base planes for

the multi-viewpoint camera system. For each cam-

era, by selecting one from the candidates, the worst

case can be avoided. Although any two non-parallel

planes are enough to avoid the worst case theoret-

ically, we determine the candidates as 3 mutually

orthogonal planes, each of which are perpendicu-

lar to the axes of the world coordinates, for low

overhead of the coordinates conversion. The aug-

mented 3-base-plane volume intersection is shown

as follows:

( 1 ) Base Plane Selection & Base Silhouette Gen-

eration(BSG): By the base plane selection, a

set of cameras are partitioned into 3 groups:

cameras in each group share the same base

plane.

( 2 ) Visual Cone Generation (VCG): Project the

base object silhouettes onto each slice.

( 3 ) Visual Cone Conversion (VCC): Convert the

visual cone of each camera into the silhou-

ettes on slices with the same direction.

( 4 ) Visual Cone Intersection (VCI): All visual

cones are intersected to generate the com-

plete 3D object shape.



4

2.2 Computational Complexity of the

Base Silhouette Generation in the 3-

Base-Plane Volume Intersection

With the 3-base-plane volume intersection method,

since Dx(t)⊥Dy(t)⊥Dz(t),

min(θiDx(t) , θiDy(t) , θiDz(t))) ≤ sin−1(
√

3/3). (4)

This means that from equation (1), the area size

of a projected object silhouette is bounded by√
6

2
· li(t)

2

f2
i

ai(t). That is, by this extension, not

only the worst case can be avoided, but also we

can estimate the upper bound of the computational

cost, which is very important for the design of the

real-time active 3D shape reconstruction.

2.3 Evaluation of the 3-Base-Plane Vol-

ume Intersection

In this section, we evaluate the performance of

the 3-base-plane volume intersection. 9 cameras

of our multi-viewpoint video capturing system are

used for the evaluation experiments. According to

3-base-plane volume intersection, the base plane of

each camera is determined by each viewing direc-

tion, and is shown in Table 2. All the evaluations

here are done in single thread programming. The

specification of the PC is shown in Table 1. And

the bounding box is fixed at 100 × 100 × 200[cm3].

Table 1 PC Specification

CPU Pentium III , 1GHz × 2

Memory 1GByte

Table 2 Base Plane of Each Camera

Camera ID Determined Base Plane

Camera 1 ZX-plane

Camera 2 Y Z-plane

Camera 3 XY -plane

Camera 4 ZX-plane

Camera 5 Y Z-plane

Camera 6 XY -plane

Camera 7 ZX-plane

Camera 8 Y Z-plane

Camera 9 ZX-plane

2.3.1 Direction of Base Plane

First, we select a single silhouette as the input

silhouette to measure the base silhouette genera-

tion time while changing the angle between the base

plane and the input screen. The voxel size is set as

r = 10[mm]. Changing the angle between the base

plane and the input screen from 0 to 86 [degree]

in step 1 [degree], the time measured is plotted in

Figure 3.

0

10

20

30

40

50

60

70

80

100

200

0 10 20 30 40 50 60 70 80

Angle [DEG]

P
ro

ce
ss

in
g

T
im

e
[m

se
c]

Fig. 3 Evaluation of Base Silhouette Generation (1)

The time graph shows that, while the PPPP al-

gorithm performs well when the base plane is nearly

parallel to the input screen, the projection breaks

down when the base plane becomes nearly perpen-

dicular to the input screen.

2.3.2 Evaluation of Base Silhouette Gen-

eration with Single-Base-Plane and

3-Base-Plane Methods

In this experiment, picking multi-viewpoint sil-

houettes as the input, the base silhouettes for all 9

cameras are generated by 2 different methods, i.e.

the single-base-plane method where the base plane

is fixed as the XY -plane, and the 3-base-plane

method where the base plane is determined from

the XY, Y Z, ZX-planes. The details of the deter-

mined base plane for each camera is shown in Table

2. The evaluation result is plotted as bar graphs

shown in Figure 4, where the base silhouette gen-

eration time of the single-base-plane method and

the 3-base-plane method is plotted for each cam-

era. From the graph, for almost cameras, the time

of the 3-base-plane method is much shorter than

that of the single-base-plane method. And as the

worst case, i.e. the case of Camera 1, 2, 5 and 7,

the PPPP breaks down, as labeled in the figures.

The results prove that by the 3-base-plane method,

not only the breakdown is avoided, but also the

performance is improved.

In following experiments, the total processing

time for one frame shape reconstruction is mea-

sured, with input silhouettes from the 9 cameras.

The total processing time is obtained by adding all

the time of each phase together, i.e the base silhou-

ette generation (BSG), the visual cone generation

(VCG), the visual cone conversion (VCC),and the

visual cone intersection (VCI). The input silhou-

ettes of 5 different postures are used in the exper-



5

Space Resolution r =10mm

0 100 200 300 400 500 600

Camera 1

Camera 2

Camera 3

Camera 4

Camera 5

Camera 6

Camera 7

Camera 8

Camera 9

Base Silhouette Generation Time [msec]

3-Base-Plane

Single-Base-Plane

BreakDown

BreakDown

BreakDown

BreakDown

Fig. 4 Evaluation of Base Silhouette Generation,

r = 10[mm]

iments and for each posture, the voxel size is set

as r = 5[mm], r = 10[mm] and r = 20[mm]. Fig-

ure 5 shows the results as the stack bar graphs for

5 different postures. Higher the space resolution,

longer the total processing time become. It is clear

the visual cone generation rules the total process-

ing. Meanwhile, the processing time changes while

the posture changes.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

r=
5

m
m

r=
1

0
m

m

r=
2

0
m

m

r=
5

m
m

r=
1

0
m

m

r=
2

0
m

m

r=
5

m
m

r=
1

0
m

m

r=
2

0
m

m

r=
5

m
m

r=
1

0
m

m

r=
2

0
m

m

r=
5

m
m

r=
1

0
m

m

r=
2

0
m

m

Posture 1 Posture 2 Posture 3 Posture 4 Posture 5

T
o

ta
l

P
ro

ce
ss

in
g

T
im

e
[m

se
c]

VCI

VCC

VCG

BSG

Fig. 5 Total Processing Time for One Frame

Reconstruction

As the summary, we come to the following con-

clusions:

( 1 ) The 3-base-plane augmented algorithm avoid

the breakdown effectively.

( 2 ) The visual cone generation is the heaviest

method in the plane-based volume intersec-

tion.

( 3 ) The performance are affected by the pos-

ture of the object, i.e. the computational

cost changes dynamically in the real-time 3D

shape reconstruction of a moving person.

( 4 ) To improve the total throughput, it is effect

to distribute the processing of the visual cone

generation.

3. Parallelization of the 3-Base-Plane
Volume Intersection

For the parallel processing, we apply the PC clus-

ter architecture for the computation. The base sil-

houette duplication parallel algorithm is proposed

as follows, and is shown in Figure 6:

( 1 ) Image Capturing (IC)

( 2 ) Input Object Silhouette Generation (ISG)

( 3 ) Base Silhouette Generation (BSG)

On each camera node, generate the base sil-

houette on the selected base plane.

( 4 ) Base Silhouette Duplication (BSD)

Suppose the cameras are grouped at least

2 groups, the base silhouette duplication is

conducted as follows.

( a ) Grouping of Computation Nodes

Assign computation nodes to the 3

camera groups to balance the compu-

tational cost for the visual hull gener-

ation of the 3 camera groups.

( b ) Duplicate the base silhouettes among

the nodes in the same group.

( 5 ) Visual Cone Generation and Intersection (VCGI)

Within each group, divide the slices into sub-

sets by the node number of the group. On

each node, generate the subsets of the visual

cone and compute the intersections of them

to get the subset of visual hull on each node.

( 6 ) Visual Hull Conversion (VHC)

On each node, convert the subset of the cal-

culated visual hull to the cross-sections per-

pendicular to one of the axes, for example,

the Z-axis.

( 7 ) Transfer Visual Hull (TVH)

Transfer the converted visual hull to the

nodes in the camera group whose base plane

is perpendicular to the Z-axis.

( 8 ) Visual Hull Intersection (VHI)

On each node which received the visual hulls,

compute the intersection of the subset of the

visual hulls to obtain the subset of the 3D

shape.



6

X

Z

Y

1 2

3

4

5

6

1 : Image Capturing

2 : Input Object Silhouette Generation

3 : Base Silhouette Generation

4 : Base Silhouette Duplication

5 : Visual Cone Generation and Intersection

6 : Visual Hull Conversion

7 : Visual Hull Transfer

8 : Visual Hull Intersection

Camera 1 Camera 2 Comp 1 Comp 2 Comp 3Camera 3 Camera 4 Camera 5 Camera 6

Camera Layout

Fig. 6 Parallel Algorithm for The 3-Base-Plane Volume Intersection

4. Parallel Pipeline Implementation of
the Plane Based Volume Intersec-
tion

4.1 Parallel Pipeline Processing Model

By the parallel algorithm shown above, the com-

putation of the 3-base-plane volume intersection is

decomposed onto each PC of the cluster. The pro-

cesses assigned on each PC can then be categorized

as follows, which is also summarized in Table 3.

• Computation Phase

The computation phase is the step where the

process time is mainly spent for arithmetic in-



7

Table 3 Process Type on Camera & Computation Node

Camera Node Computation Node

Step Computation I/O Computation I/O

Local Remote Local Remote

1 IC

2 ISG

3 BSG

4 BSD BSD

5 VCGI VCGI

6 VHC VHC

7 TVH TVH

8 VHI VHI

IC

IC

IC

IC

BSG

BSG

BSG

BSG

ISG

ISG

ISG

ISG

TVH

TVH

TVH

TVH

VHI

VHI

VHI

VHI

BSD

BSD

BSD

BSD

VCGI

VCGI

VCGI

VCGI

VHC

VHC

VHC

VHC
WAIT WAIT

Process

Process

Process

Process

Process

Process

Process

Process

Process

Process

Process

Process

Process

Process

Process

Process

Capturing

n

Capturing

n

Capturing

n+1

Capturing

n+1

Capturing

n+2

Capturing

n+3

Capturing

n+4

Camera Node 1

Camera Node 1

Camera Node 2

Camera Node 2

Camera Node 3

Camera Node 3

Camera Node 4

Camera Node 4

time

SYNC SYNC

Processing
Interval

Fig. 7 Sequential Processing Model on Node PC

structions. For the camera node, the steps of

ISG, BSG, VCGI, VHC and VHI are catego-

rized as computation phases. For the compu-

tation node, computation phases consists of the

steps of VCGI, VHC and VHI.

• Data I/O

The data I/O phase is the step where the pro-

cess time is mainly spent for reading or writ-

ing data between the memory and the I/O de-

vices, for example, storages, the capture board,

the network card and so on. While such pro-

cesses need little CPU power on recent PC ar-

chitecture, the computation phases is stopped

by these processes. On a PC cluster system,

the data I/O phases consists of 2 types as lo-

cal I/O and remote I/O. In the above parallel

algorithm, for the camera node, the local I/O

phase contains the IC step and the remote I/O

phases contain the BSD and TVH steps. For

the computation node, all data I/O phases are

the remote I/O phases which contain the BSD

and TVH steps.

Notice that, while the time spent for the data

I/O may be shortened by applying high speed de-

vices, the remote I/O causes synchronization be-

tween nodes on a PC cluster, and it may cause

extra wait time between the computation phases.

Figure 7 shows an example of time flow for 4 cam-

era nodes executing the parallel 3-base-plane vol-

ume intersection. On the top of the figure, at each

capturing time, the nodes are synchronized. And

after the capturing, the computation is distributed

on each node. We call the processing between 2

capturing on each node as the processing cycle, and

the details of one processing cycle are shown at the

bottom of the figure. On each node, the processes

are carried out sequentially. At the start, all nodes

are synchronized for the image capturing. Since the

computation amount of BSG and VCGI depend on

the size of the input silhouette and the camera lay-

out, the time for these phases differs on each node.

While the end timing of these phases on each node

are different, the end timing of the BSD and the

TVH are synchronized by the communication be-

tween nodes. It is clear that extra wait time is

caused by the synchronization, and such wait time

will not be shortened even though the time for BSD

or TVH are shortened.

To get rid of such extra wait time, we propose the

pipeline processing model on each node PC. That

is, on the PC cluster, the parallel pipeline process-

ing is carried out like Figure 8 shows.

In the figure, the processing flow of 4 camera

nodes is shown on the top, and the details of the

processing cycle on one node is shown at the bot-

tom. On each node, the 8 steps of IC, ISG, BSG,

BSD, VCGI, VHC, TVH and VHI are executed as

8 stages of the pipeline processing, i.e. each stage

is the processing step for each of the continuous 8

frames respectively. In this parallel pipeline pro-

cessing model, all nodes are only synchronized for

the image capturing at the start of each cycle. Af-

ter that, processes on each node are carried out

concurrently. Since both the computation phases

and the data I/O phases are executed simultane-

ously in one cycle, the computation phases will not



8

IC(n)

BSG(n-2)

ISG(n-1)

TVH(n-6)

VHI(n-7)

BSD(n-3)

VCGI(n-4)

VHC(n-5)

Process

Process

Process

Process

Process

Process

Process

Process

Process

Process

Process

Process

Process

Process

Process

Process

Capturing

n

Capturing

n

Capturing

n+1

Capturing

n+2

Capturing

n+3

Capturing

n+4

Capturing

n+1

Capturing

n+2

Capturing

n+3

Capturing

n+4

Camera Node 1

Camera Node 2

Camera Node 3

Camera Node 4

time

IC(n+1)

BSG(n-1)

ISG(n)

TVH(n-5)

VHI(n-6)

BSD(n-2)

VCGI(n-3)

VHC(n-4)

IC(n+2)

BSG(n)

ISG(n+1)

TVH(n-4)

VHI(n-5)

BSD(n-1)

VCGI(n-2)

VHC(n-3)

IC(n+3)

BSG(n+1)

ISG(n+2)

TVH(n-3)

VHI(n-4)

BSD(n)

VCGI(n-1)

VHC(n-2)

Processing
Interval

Fig. 8 Pipeline Processing Model on Node PC

be stopped by data I/O, including the remote I/O

phases. That is, no extra wait time is spent during

one cycle in the parallel pipeline processing model.

Although the process for one frame is accomplished

in multiple cycles, the processing interval is short-

ened from the summation of all steps + extra wait

time to the time of the stage which runs longest.

To realize the pipeline processing model shown

in Figure 8 on each node, the concurrent program-

ming platform is required. While most recent op-

erating systems support concurrent programming,

there exist the following problems in practice:

• Hardware Resource Conflict

As Figure 8 shows, the BSD and the TVH

stages need access to the network devices. If

only one network card is available for access-

ing, the two stages can not be executed at the

same time. That is the mechanism for avoiding

such resource conflict is required.

• Limitation of CPU Resource

In most recent operating systems, the concur-

rent programming is realized by the time shar-

ing scheduling (TSS) mechanism. That is, each

full program is split into multiple executive

units, and by switching the executive unit on

CPU in a tiny time interval, multiple programs

are executed concurrently in appearance. On

such OS, the number of the units concurrently

invoked at exactly same time will never be

greater than the number of the CPU. Suppose

each stage in Figure 8 is the executive unit,

in practice, if the CPU number is less than 8,

all 8 stages will never be executed at exactly

same time, but be executed in some order de-

termined by the OS scheduling mechanism.

• Stage Order

Since not all stages can be invoked at exactly

same time in practice, the invoking order of

the stages will affect the process time of one

cycle. If the time of each stage is static, the

optimal order can be determined beforehand.

But as mentioned so far, the process time

changes dynamically while the shape of the ob-

ject changes. So the mechanism to change the

stage order dynamically is required.

As the summary, both the mechanisms of avoid-

ing resource conflict and managing the stage order

are required to realize the parallel pipeline process-

ing for the real-time 3D shape reconstruction.

Furthermore, the parallel pipeline processing

model is suitable for a general parallel computation

on a PC cluster architecture because the extra wait

time caused by the data sharing can be got rid of.

Also the problems of the resource conflict and the

stage order, i.e. the order of executive unit, are also

general problems for the concurrent programming

on most recent PCs.

In what follows, the system design to realize the

parallel pipeline processing on a PC cluster is shown

in details.

4.2 Multi-thread Implementation of Mul-

tiple Stages

To realize the parallel pipeline processing on the

PC cluster, the following types of modules are de-

signed.

• Processing Module

This module consists of the memory addresses

for the input and the output, and the program

routines of one step in the parallel algorithm.

The processing module can be categorized as

the following 3 types : Computation Module,

Local I/O Module and Communication Mod-

ule. Each phase of the parallel algorithm is

implemented as one processing module and is

bound to one thread.

• Control Module

To realize the parallel pipeline processing, not

only the input and the output of each module

should be assigned correctly, but also the mech-

anisms of avoiding resource conflict and manag-

ing stage order should be realized. While each

processing module is bounded to one thread,

the control module is designed to manage the

threads and to realize the above tasks. The de-

tails of the control module will be described in

the next section.



9

m [0]1

m [1]1

m [0]2

m [1]2

m [0]3

m [1]3

M1 M2 M3

Memory Pool

Tree of Control Units

Root Control Unit

Control Unit Control Unit Control Unit

Fig. 9 Overview of The Control Module

4.3 Thread Tree Control Model for Threads

Scheduling

The overview of the control module is shown in

Figure 9. The control module consists of a memory

pool and multiple control units which are organized

in a tree structure. The details of these items are

shown below.

By keeping double memory blocks for each phase,

each phase can be executed concurrently. By alter-

nating the buffer index between 0 and 1, the last

output of the precede phase is given to the sub-

sequent phase as the input, thus just realizes the

pipeline processing. By applying this input & out-

put assignment for each cycle, each processing mod-

ule realizes one stage of the pipeline processing.

4.3.1 Control Unit

For convenience, in what follows, we suppose the

multi-thread programming is supported on PCs.

The control unit is just one thread and the main

routine of the thread, i.e. the control routine, is

defined below.

The control module consists of multiple control

units and all these units are organized as a tree

structure, which is realized by the data structure

of the control unit as shown as below. Notice that

the structure of the root control unit differs from

others and is shown later.

The following are the details of the structure of

the control unit.

• Parent Handle

The handle of the control unit which is the par-

ent of this control unit.

• Children Handle List

The list contains the handles of the control

units which are the children of this control unit.

• Processing Module Handle

By this handle, one processing module is bound

with the control unit. The computation or

the communication routines of the module can

then be called by the control unit through this

handle.

m [0]1 m [0]4 m [0]7

m [1]1

m [0]2 m [0]5 m [0]8

m [1]2 m [1]4 m [1]7

m [0]3 m [0]6

m [1]3 m [1]6m [1]5 m [1]8

Root Control Unit

Im
a

g
e C

a
p

tu
rin

g

In
p

u
t O

b
je

ct S
i lh

o
u

e
tte G

e
n

e
ra

tio
n

B
a

se S
il h

o
u

e
t t e G

e
n

e
ra

tio
n

B
a

se S
ilh

o
u

e
tte D

u
p

l ica
tio

n

V
isu

a
l C

o
n

e G
e

n
e

ra
t io

n
 &

 In
te

rse
c tio

n

V
i su

a
l C

o
n

e C
o

n
v

e
rsio

n

V
i su

a
l H

u
ll T

ra
n

s fe
r

V
isu

a
l H

u
l l In

e
rse

ctio
n

M1 M2 M3 M4 M5 M6 M8

M7

Fig. 10 The Control Module for The Parallel Pipeline of

3-Base-Plane Volume Intersection (Camera Node)

• Control Routine

As mentioned above, the control routine is the

main routine of the thread. When the thread

is created, the following cycle is executed to

realize the controlling task.

( 1 ) Sleep until being waken up.

( 2 ) Call the routine of the bound module,

using the processing module handle.

( 3 ) When the routine of the bound module

ends, wake up all of the child control

units.

( 4 ) Sleep until all child control units finish

one cycle.

( 5 ) Assign the input and the output for the

bound module for the next cycle.

( 6 ) Inform the parent control unit the cycle

finishing of this unit.

And the structure of the root control unit is

shown below.

• Children Handle List

This is the same as the common control unit.

• Cluster Synchronization Routine

These routines are used to synchronize the

pipeline processing with other nodes in the PC

cluster.

• Control Routine

When the program starts, the following cycle

is executed in the root control unit.

( 1 ) Call the cluster synchronization routine.

( 2 ) Wake up all of the child control units.

( 3 ) Sleep until all child control units finish

one cycle.

4.3.2 Summary

Based on the above thread tree model, the par-



10

IC(n)

BSG(n-2)

BSG(n-1)

ISG(n-1)

ISG(n)

TVH(n-6) TVH(n-5)

VHI(n-7)

VHI(n-6)BSD(n-3)

BSD(n-2)

VCGI(n-4)

VCGI(n-3)

VHC(n-5)

VHC(n-4)

Capturing

n

Capturing

n+1

Capturing

n+2

IC(n+1)

time

Fig. 11 Processing Flow of 3-Base-Plane Parallel

Pipeline Processing

allel pipeline of the 3-base-plane volume intersec-

tion is implemented as the tree shown in Figure

10, which shows the diagram of the control mod-

ule for the camera node. Since both the stage of

BSD and TVH need the access to the network de-

vice, to avoid the conflict, the control unit of TVH

is located as the child of the control unit of BSD.

According to the control routine defined above, the

child control unit will sleep until the process of its

parent is over and will only be waken up by its par-

ent.

Figure 11 shows the sample of the details of 2

cycles on the camera node with only 1 CPU. Since

there is only 1 CPU, all stages are executed one

by one within the cycle. Notice that, by the above

control module, the order of the stages changes for

each cycle while the TVH stage is executed later

than the BSD stage.

In the next section, experiments are conducted

to evaluate the performance of the parallel pipeline

for both the above default and several customized

thread trees

5. Performance Evaluation

In this section, some experiments are conducted

to evaluate the performance of the parallel pipeline

processing.

5.1 Setup of Experiments

9 to 27 nodes PCs are utilized, and 9 of them are

assigned as camera nodes, i.e. the nodes with cam-

era connected. The specification of each PC are

same, and is shown in Table 1. All the implemen-

tation is conducted on the Linux kernel of version

2.4.18.

5.2 Performance Evaluation of the Paral-

lel Pipeline System with Image File

I/O

To evaluate the throughput of the parallel com-

putation without the limit of the capturing facility,

experiments where the input silhouettes are loaded

from files are conducted. Instead of the stages of IC

m [0]1 m [0]4 m [0]7

m [1]1

m [0]2 m [0]5

m [1]2 m [1]4 m [1]7

m [0]3 m [0]6

m [1]3 m [1]6m [1]5

Root Control Unit

In
p

u
t O

b
je

ct S
ilh

o
u

e
tte L

o
a

d
in

g

B
a

se S
ilh

o
u

e
tte G

e
n

e
ra

tio
n

B
a

se S
ilh

o
u

e
tte D

u
p

lica
tio

n

V
isu

a
l C

o
n

e G
e

n
e

ra
t io

n
 &

 In
te

rse
c t io

n

V
isu

a
l C

o
n

e C
o

n
v

e
rs io

n

V
isu

a
l H

u
ll T

ra
n

sfe
r

V
isu

a
l H

u
ll In

e
rse

ctio
n

M1 M2 M3 M4 M5

M6

M7

Fig. 12 The Control Module for The Parallel Pipeline

with File I/O (Camera Node)

and ISG, the stage of Load Input Object Silhouette

File(LF) is added as the first stage of the pipeline.

The default control module for the camera node in

following experiments is shown in Figure 12.

5.2.1 Default Thread Tree for the Paral-

lel Pipeline of 3-Base-Plane Volume

Intersection

For each of the 5 multi-viewpoint sequences sets,

3 experiments are conducted. For all the experi-

ments, the voxel size is set as r = 10[mm].

5.2.2 Total Throughput

Figure 13 shows the average time of 50 processing

cycles. Each cycle starts at the timing of loading

one frame on each node which is synchronized and

ends at the timing before loading the next frame.

The processing time for the 5 postures are shown

as bar graphs.

From the graph, the total throughput changes

while the posture changes. While the processing

time is shortened while adding computation nodes,

it time does not decrease from using 18 nodes for

each posture. To find the reason of the performance

saturation, we pick up the experiments of the pos-

ture 1, the details processing time of each stage is

shown in the next section.

5.2.3 Processing Time Analysis of the

Pipeline Stages

For the detailed processing time inside one pro-

cessing cycle, the time flow of each stage is mea-

sured. Figure 14 shows one snapshot of the pro-

cessing time of each stage within one cycle on the

camera node 1, loading the silhouettes of posture

1 as the input, where total 9 camera nodes and 9



11

0

20

40

60

80

100

120

140

Posture 1 Posture 2 Posture 3 Posture 4 Posture 5

P
ro

ce
ss

T
im

e
[m

se
c]

camera node = 9, computation node = 0
camera node = 9, computation node = 9
camera node = 9, computation node = 18

Fig. 13 Total Throughput of Parallel Volume Intersection,

where silhouettes of 5 different postures are taken

as the input, and the voxel size r = 10[mm]

0.006416

19.350559

4.254924

27.081883

0.013021

4.815616

3.714295

0 10 20 30 40 50

LF

BSG

BSD

VCGI

VHC

TVH

VHI

S
T

A
G

E
S

Time [msec]

Fig. 14 SnapShot of Processing Time for Each Stage in

Parallel Computation of Posture 1, total nodes

number = 18

computational nodes are used. In the figure, each

flowing bar shows the start and the end timing of

each stage. The data label on each bar is the inter-

val of the stage in millisecond.

Since the kernel of the Linux-2.4.18 does not

switch the CPU time from the busy thread, which

is the thread where no system sleep is called, to

other threads, on the system with up to 2 CPUs,

up to 2 threads can be executed exactly simultane-

ously. That is why up to 2 stages are observed be-

ing executed simultaneously. From the graph, the

BSG and the VCGI stage are much heavier than

other stages. Since each node PC has 2 CPUs, the

8 stages are not executed exactly simultaneously.

However, from the overlap of the flowing bars in

the graph, we can observe that up to 2 stages are

executed at exactly same time. Also we can observe

that the TVH stage starts after the BSD stage as it

is designed, which proves the mechanism to avoid

the resource conflict works well.

As mentioned before, by the default structure of

the control module, the executing order of the stage

4.254924
2.856135
2.344927

4.836841
2.693196

1.516912
4.34644

2.799664
4.701527

5.99842
5.927141
5.984133
7.678192
7.692758
7.699476
7.68756

5.051321
5.115545

0 2 4 6 8 10

Node 1
Node 2
Node 3
Node 4
Node 5
Node 6
Node 7
Node 8
Node 9

Node 10
Node 11
Node 12
Node 13
Node 14
Node 15
Node 16
Node 17
Node 18

Time [msec]

Fig. 15 Processing Time of The BSD Stage, nodes

number = 18

within one cycle is not aligned. So within the same

cycle, one specific stage, for example the BSD stage,

on different node may start at different time. Such

time difference will lengthen the remote data I/O

stages because extra wait time is taken to synchro-

nize the communication between nodes. To confirm

whether such extra wait is caused, the snapshot of

the BSD stage on all nodes is shown in Figure 15.

It is clear that on each node, the BSD stage does

not starts at the same time. And the extra wait

time can be confirmed in all 3 experiments.

Furthermore, since there exist 2 CPUs on each

node, up to 2 stages can be executed exactly simul-

taneously. However, from Figure 14, for much time

within one cycle, only one stage is executed. This

means a proper executing order of the stages can

shorten the processing time and a bad order will

damage the throughput.

From the above discussion, the following 2 ap-

proaches can be taken to improve the throughput.

( 1 ) Align the start time of the remote data I/O

stages, i.e. the BSD and the TVH stages,

at the same time among all nodes to get rid

of the extra time loss for the communication

synchronization.

( 2 ) Tuning the executing order of the stages, so

as to keep up to 2 stages executed exactly

simultaneously on the 2 CPUs.

In what follows, experiments are shown to real-

ize both of the above approaches by customizing

the control module, where only the structure of the

thread tree is changed.

5.2.4 Start Timing Alignment for Remote

Data I/O Stages

To align the start timing of the BSD and the

TVH stages among all nodes in every processing

cycle, the control modules for the camera node and

the computation node are customized as the Figure



12

BSD

TVH

VCGI VHIVHC

BSD

TVH

BSG VCGI LF VHIVHC

Camera Node Computation Node

Fig. 16 Customized Control Module for aligning the

start time of data sharing stages

16 shows. According to the design of the root con-

trol unit, all children of the root are waken up after

finishing the process of the root, i.e. conducting

the synchronization among all nodes for each pro-

cessing cycle. By the thread tree shown in Figure

16, where the BSD stage is located as the single

child of the root, the BSD stage on each node is

executed immediately after the process of the root

which synchronizes all nodes. As a result, the start

timing of the BSD stage on all nodes are aligned

at the same time. And the other communication

stage, the TVH stage is located as the single child

of the BSD, which is required to avoid the hard-

ware conflict. Since after the BSD stage all nodes

are synchronized by the communication task, the

start timing of the child of the BSD stage, i.e. the

TVH stage, is also aligned at the same time on all

nodes.

Applying this customized thread tree on both the

camera and the computation nodes, the above ex-

periment is conducted. Figure 17 shows the snap-

shot of executing time of the BSD stages on all

nodes. From the graph, on all nodes, the BSD stage

is invoked almost simultaneously and the process-

ing interval of this stage is shortened to almost half

of that for the default thread tree, shown in Figure

15. This proves both the efficiency of the start tim-

ing alignment of the remote data sharing stage and

the effectiveness and flexibility of the tree struc-

tured control module, because such start timing

alignment is realized by just changing the structure

of the thread tree, which is very easy for implemen-

tations.

5.2.5 Computational Complexity Based

Customization of the Thread Tree

According to the design of the tree structured

control module, to keep two stages executed simul-

taneously, two branches of the stages are needed

and the load of each branch must be well balanced.

3.465218
2.358408

1.519805
3.748978

2.397153
2.10038

3.461803
2.763564

3.479802
2.461495
2.477887
2.51551

3.448574
3.422191
3.451645
3.435733

1.517736
1.513615

0 0.5 1 1.5 2 2.5 3 3.5 4

Node 1
Node 2
Node 3
Node 4
Node 5
Node 6
Node 7
Node 8
Node 9

Node 10
Node 11
Node 12
Node 13
Node 14
Node 15
Node 16
Node 17
Node 18

Time [msec]

Fig. 17 Processing Time of The BSD Stage, nodes

number = 18 with customized control module

From the result of the above experiment, to align

the start timing of the communication stages on all

nodes, the BSD stage must be the child of the root

control unit. So one branch must start from the

BSD stage. Meanwhile, for the camera node, the

BSG and the VCGI stages are two main arithmetic

stages and are much heavier than others. To bal-

ance the load of the two branches, it is required to

locate each of the two stages in different branch. In

practice, since the processing time of each of stages

changes while the posture of the object changes.

For the same posture, the time of the VCGI on each

node may be shortened by increasing the computa-

tion nodes. Therefore, the load of the BSG and

the VCGI changes case by case, and the location of

the BSG and the VCGI stages should also be de-

termined case by case. Let tBSG and tV CGI denote

the time of the 2 stages respectively. And let tcomm

be the summation of time for communication stages

of the BSD and TVH. For convenience, the follow-

ing 4 cases are picked up, (1) tV CGI > tBSG and

tV CGI < tBSG + tcomm, (2) tV CGI > tBSG + tcomm,

(3) tV CGI < tBSG and tBSG < tV CGI + tcomm, (4)

tV CGI + tcomm < tBSG . 4 types of control modules

are designed and shown in Figure 18 for the camera

node, corresponding to the 4 cases.

Figure 19 shows the snapshot on the camera node

1 in case of 9 camera nodes and 9 computational

nodes are used. In this case, the type 1 control

module is selected. From the graph, by applying

the customized control module, 2 stages are kept

being executed simultaneously for almost whole du-

ration of the cycle. And the processing time of the

cycle is shortened from over 40 [msec] to about 30

[msec]. That is, the video frame rate of the 3D

shape reconstruction is realized.

Finally, the processing time of one cycle in 3 ex-

periments is shown in Figure 20. In each of the ex-

periment, totally 9, 18 and 27 nodes are used for the



13

BSD

TVH

BSG

VCGI

LFVHIVHC

BSD

TVH

BSG

VCGI

LFVHIVHC

Type 1 Type 3

BSD

TVH

BSG

VCGI

LFVHI VHC

BSD

TVH

VCGI

BSG

LFVHI VHC

Type 2 Type 4

Fig. 18 Customized Control Modules

0.005468

19.153465

3.465218

26.709734

0.005424

4.506973

3.593884

0 5 10 15 20 25 30 35

LF

BSG

BSD

VCGI

VHC

TVH

VHI

S
T

A
G

E
S

Time [msec]

Fig. 19 Snapshot of Processing Time of Each Stage, in

case of nodes number = 18, on camera node 1,

with the customized control module type 1

0

20

40

60

80

100

120

140

camera + computation node = 9 camera + computation node = 18 camera + computation node = 27

P
ro

c
e
s
s

T
im

e
[m

s
e
c
]

Default

Custom

Fig. 20 Processing Time of One Cycle, with customized

control module on each camera node

computation. The processing time of one cycle by

applying the default control module on each node

is also plotted for the comparison. From the graph,

we can observe that the performance is improved

by applying the customized control module, where

on each node, the executing order of the stages is

tuned so as to keep 2 stages executed simultane-

ously.

The above experiments prove that the effective-

ness of tuning the executing order of the stages.

And the flexibility of the proposed tree structured

control module is also proved.

5.3 Performance Evaluation of the Paral-

lel Pipeline System with Online Image

Capturing

Based on the evaluation results of the paral-

lel pipeline volume intersection so far, the control

module of the camera node is designed for the 3D

shape reconstruction with online capturing. As

shown in Figure 21, the image capturing (IC) and

the input silhouette generation (ISG) stages are

added. Since dual CPUs are powered on each PC

node, the control module consists of two branches of

the stages, like the type 2 control module in Figure

18, the BSG stage is located after the communi-

cation stages in one branch, and the VCGI stage

is located in the other branch. Notice that, since

the main process in IC stage is to load the image

data from capturing device to the memory which is

usually realized by the DMA (Direct Memory Ac-

cess) controller in recent PC architecture, during

the process on the IC stage, the CPU is free for

other processes, therefore the BSG stage is located

as the sibling of the IC stage so as to be executed

without waiting the image capturing. For the com-

putation node, the type 2 control module in Figure

18 is applied.

As the experiments with the file I/O, 9 to 27

nodes are used in this section. The same 9 cam-

era nodes are used. The camera layout and the

bounding box for the shape reconstruction are also

as same as the experiments so far.

The performance evaluation is conducted by 18

experiments. For each of them, 9 to 27 nodes, which

consists of the 9 camera nodes and additional com-

putation nodes, are used for the parallel 3D shape

reconstruction. Each experiment was conducted

while capturing a person moving inside the bound-

ing box by the multi-viewpoint cameras system.

At first the voxel size is set as r = 10[mm]. The

processing time of one processing cycle for each of



14

BSD

TVH

BSG

VCGI

IC

VHIVHC ISG

Fig. 21 Cutomized Control Module of Camera Node, for

the shape reconstruction with online capturing.

0

20

40

60

80

100

120

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Number of PC Nodes

P
ro

ce
ss

in
g

T
im

e
[m

se
c]

Fig. 22 Processing Time of One Cycle, for the shape re-

construction with online capturing, r = 10[mm].

the 18 experiments is shown in Figure 22. The

processing time saturates at about 80 [msec] while

increasing the number of PC nodes. To find the

reason of the saturation, we analyze the processing

time for each stage.

Figure 23 shows the snapshot of 2 continuous cy-

cle , i.e. the n-th and the (n + 1)-th cycle, on the

camera node 1 in the experiment where 12 nodes(9

camera nodes and 3 computation nodes) are used.

In the graph, the processing time of each stage is

shown as flowing bars as the experiments in the

previous section. In addition, the shutter interval

is also shown in the graph as the bar with thin slop-

ing stripes. Since the synchronized multi-viewpoint

capturing is desired for the parallel 3D shape re-

construction, each processing cycle on each camera

node must be synchronized by the shutter timing.

As the shutter rate of the camera head in our multi-

viewpoint cameras system is fixed to about 12[fps],

the shutter interval is fixed at about 80[msec]. In

the graph, while all stages ended within the shutter

83.495066

8.652264

15.476915

58.166609

14.527582

53.348377

4.533796

4.286425

0.006197

84.827474

8.538784

15.53349

35.073959

20.134385

56.439552

4.615448

4.125019

0.00407

0 20 40 60 80 100 120 140 160 180

Shutter(n)

IC(n)

ISG(n-1)

BSG(n-2)

BSD(n-3)

VCGI(n-4)

VHC(n-5)

TVH(n-6)

VHI(n-7)

Shutter(n+1)

IC(n+1)

ISG(n)

BSG(n-1)

BSD(n-2)

VCGI(n-3)

VHC(n-4)

TVH(n-5)

VHI(n-6)

Processing Time [msec]

Fig. 23 Snapshot of Processing Time of Each Stage on

Camera Node 1, for 2 continuous cycles, i.e. the

n-th and the (n + 1)-th cycle, r = 10[mm]. The

“Shutter” bar shows the shutter interval of the

camera head.

0

100

200

300

400

500

600

700

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Number of PC Nodes

P
ro

ce
ss

in
g

T
im

e
[m

se
c]

Fig. 24 Processing Time of One Cycle, for the shape

reconstruction with online capturing, r = 5[mm].

interval, the start of the next cycle is synchronized

at the next shutter timing.

Furthermore, from the graph, the BSG stage was

executed simultaneously with the IC stage(shown

as the bar with fat sloping stripes), while the VCGI

stage was also executed. This shows that the CPU

is almost not used for the IC stage for the data I/O

from the capturing device is conducted by the DMA

controller. This also proves the efficiency of CPU

usage in the parallel pipeline processing, where not

only the CPU loss time for the remote data sharing

is as short as possible but also the CPU loss time

for the local data I/O is nearly zero.

Secondarily, the space resolution is set as r =

5mm. As the above evaluation experiments, the

additional computation nodes are increased from 0

to 18 while 9 camera nodes are used. The process-

ing time of one cycle is shown in Figure 24. From

the graph, the processing time is shortened effec-

tively by adding computation nodes.

Figure 25 shows the snapshot of 2 continuous cy-

cle on the camera node 1 in the case of using 27



15

118.425867

3.925227

10.831264

37.063273

18.422388

97.769205

0.005078

16.783529

19.067989

103.067184

4.653635

9.914565

40.173874

23.63989

81.620078

0.002342

16.759626

19.842951

0 50 100 150 200 250 300

Shutter(n)

IC(n)

ISG(n-1)

BSG(n-2)

BSD(n-3)

VCGI(n-4)

VHC(n-5)

TVH(n-6)

VHI(n-7)

Shutter(n+1)

IC(n+1)

ISG(n)

BSG(n-1)

BSD(n-2)

VCGI(n-3)

VHC(n-4)

TVH(n-5)

VHI(n-6)

Processing Time [msec]

Fig. 25 Snapshot of Processing Time of Each Stage on

Camera Node 1, for 2 continuous cycles, r =

5[mm]. The “Shutter” bar shows the shutter in-

terval of the camera head.

nodes (9 camera nodes and 18 computation nodes).

In the graph, the processing time of each stage is

shown as flowing bars as the experiments in the

previous section. From the graph, in this case, the

throughput is ruled by the time of “VCGI”. That is,

the performance can be improved by adding more

computation nodes.

As the summary, the real-time 3D shape recon-

struction while capturing a moving person by the

multi-viewpoint cameras system is realized by the

proposed parallel pipeline volume intersection on

the PC cluster in case of r = 10[mm]. The satu-

ration of the performance is caused by the shutter

interval of the camera head. In case of r = 5[mm],

by adding computation nodes, the throughput is

increased effectively.

6. Conclusion

In this paper, the acceleration of the volume in-

tersection is conducted in the following steps.

( 1 ) Plane-based volume intersection

The plane-based volume intersection is pro-

posed. By decomposing the 3D space into

parallel planes, the 3D shape is represented

as cross-sections on the parallel planes. The

volume intersection is then realized by com-

puting the intersections of the back projected

silhouettes from each viewpoint on the par-

allel planes. The back projection of the sil-

houette is conducted as a plane-to-plane per-

spective projection(PPPP). The PPPP is di-

vided as two kinds of projections, i.e. the

projection from the input screen to one of

the parallel planes which is called as the base

plane, and the projection from the base plane

to other parallel planes. The back-projected

silhouette on the base plane is called as the

base silhouette. The processing to create the

base silhouette is then named as the base sil-

houette generation (BSG), and the process-

ing to create the silhouettes on other parallel

planes is named as the visual cone genera-

tion (VCG). The linear-wise PPPP and the

plane-wise PPPP are proposed to accelerate

the BSG and the VCG respectively.

The 3-base-plane volume intersection is also

proposed to avoid the breakdown of the

PPPP if any input screen of the multi-

viewpoint cameras is nearly parallel to the

parallel planes. By introducing 3 mutually

orthogonal planes as the candidates of the

base plane for each camera, not only the

breakdown is avoided but also the upper

limit of the computation complexity can be

estimated.

The efficiency of the accelerated volume in-

tersection is proved by evaluation experi-

ments.

( 2 ) Parallelization of the plane-based vol-

ume intersection by base silhouette du-

plication

To realize the real-time volume intersection,

the parallel processing on the PC cluster

is realized by developing the parallel algo-

rithm for the plane-based volume intersec-

tion. For the parallelization, the commu-

nications phases, i.e. the base silhouette

duplication (BSD) and the transfer visual

hull (TVH) are introduced. Since both the

base silhouette and the visual hull are repre-

sented as two-valued variables, the data size

of the communication is small and the ad-

ditional communication phases cause small

overheads, which is proved by the evaluation

experiments.

( 3 ) Parallel pipeline processing model

To improve the throughput, the multi-phases

processing on each node are divided into mul-

tiple stages. By introducing the pipeline pro-

cessing on each node, the stages can be ex-

ecuted concurrently and the throughput can

be improved. To realize the pipeline on each

node, the tree structured control module is

proposed. In the control module, all stages

are organized as a tree structure. The chil-

dren are controlled by their parent and the



16

siblings are executed concurrently. There-

fore, the hardware conflict between stages

can be avoid easily, which is proved by the

experimental results.

( 4 ) Synchronization of the communication

stages

While the data size for the communications is

small, extra time will spent if the communi-

cation stages on nodes are not synchronized,

which is observed from the experimental re-

sults. By changing the structure of the con-

trol module, the communication stages on all

nodes are easily synchronized, which is also

proved by the experimental results. Further-

more, from the experimental results, such

synchronization affects little on other arith-

metic stages which are executed concurrently

and individually on each node.

( 5 ) Customizing the control module ac-

cording to the computation complexity

Performance evaluations are conducted for

the 3D shape reconstruction of the different

postures and the results shows that the per-

formance is affected greatly by the posture

of the object. That is, the computation com-

plexity changes dynamically for the real-time

3D shape reconstruction of a dynamic object.

Experimental results of customizing the con-

trol module according the computation com-

plexity prove that the high throughput can

only be achieved by changing the control

module dynamically for the processing with

dynamic computation complexity, such as

the real-time 3D shape reconstruction of a

dynamic object.

By the above acceleration, the real-time 3D shape

reconstruction is realized on the PC cluster. In

addition, the effectiveness of the proposed parallel

pipeline processing is proved, and the tree structure

control module is effective for keeping high through-

put while the computational complexity changes

dynamically.

References

1) E. Borovikov and L. Davis. A distributed sys-

tem for real-time volume reconstruction. In

Proc. of International Workshop on Computer

Architectures for Machine Perception, pages

183–189, Padova, Italy, September 2000.

2) G. Cheung and T. Kanade. A real time sys-

tem for robust 3d voxel reconstruction of hu-

man motions. In Proc. of Computer Vision

and Pattern Recognition, pages 714–720, South

Carolina, USA, June 2000.

3) T. Kanade, P. Rander, and P. J. Narayanan.

Virtualized reality: Constructing virtual worlds

from real scenes. IEEE Multimedia, pages 34–

47, 1997.

4) Itaru Kitahara, Yuichi Ohta, and Takeo

Kanade. 3d video display of sports scene using

multiple video cameras. In Meeting on Image

Recognition and Understanding, vol 1, pages 3–

8, 2000.

5) A. Laurentini. How far 3d shapes can be un-

derstood from 2d silhouettes. IEEE Transac-

tions on Pattern Analysis and Machine Intelli-

gence, 17(2):188–195, 1995.

6) Wojciech Matusik, Chris Buehler, Ramesh

Raskar, Steven J. Gortler, and Leonard McMil-

lan. Image-based visual hulls. In Proc.

of SIGGRAPH 2000, pages 369–374. ACM

Press/Addison-Wesley Publishing Co., July

2000.

7) S. Moezzi, L. Tai, and P. Gerard. Virtual view

generation for 3d digital video. IEEE Multime-

dia, pages 18–26, 1997.

8) Sakamoto N., Yasuhara Y., Kukimoto N.,

Ebara Y., and Koyamada K. 3d modeling and

displaying system for volume communication.

In 4th International Symposium on Advanced

Fluid Information and Transdisciplinary Fluid

Integration, pages 159–164, 2004.

9) Steven M. Seitz and Charles R. Dyer. To-

ward image-based scene representation using

view morphing. In Proc. 13th Int. Conf. on

Pattern Recognition, Vol. I, pages 84–89, 1996.

10) S. Sugawara, Y. Suzuki, G.and Nagashima,

M. Matsuura, H. Tanigawa, and M. Moiriuchi.

Interspace: Networked virtual world for visual

communication. pages 1344–1349, December

1994.

11) Sundar Vedula. Image Based Spatio-Temporal

Modeling and View Interpolation of Dynamic

Events. PhD thesis, Robotics Institute,

Carnegie Mellon University, Pittsburgh, PA,

September 2001.

12) T. Wada, X. Wu, S. Tokai, and T. Matsuyama.

Homography based parallel volume intersec-

tion: Toward real-time reconstruction using ac-

tive camera. In Proc.of International Workshop

on Computer Architectures for Machine Per-

ception, pages 331–339, Padova, Italy, Septem-

ber 2000.


