
Parallel Pipeline Volume Intersection
for Real-Time 3D Shape Reconstruction

on a PC Cluster

Xiaojun Wu
Department of Intelligence Science and Technology,

Graduate School of Informatics, Kyoto University, Japan.
(Now working at NTT Cyber Space Laboratories, Japan.)

Osamu Takizawa
Fujitsu Nagano Systems Engineering Limited, Japan.

Takashi Matsuyama
Department of Intelligence Science and Technology,

Graduate School of Informatics, Kyoto University, Japan.

Abstract

The human activity monitoring is one of the major tasks
in the field of computer vision. Recently, not only the 2D
images but also 3D shapes of a moving person are desired
in kinds of cases, such as motion analysis, security mon-
itoring, 3D video creation and so on. In this paper, we
propose a parallel pipeline system on a PC cluster for re-
constructing the 3D shape of a moving person in real-time.
For the 3D shape reconstruction, we have extended the vol-
ume intersection method to the 3-base-plane volume inter-
section. By thus extension, the computation is accelerated
greatly for arbitrary camera layouts. We also parallelized
the 3-base-plane method and implemented it on a PC clus-
ter. On each node, the pipeline processing is adopted to im-
prove the throughput. To decrease the CPU idle time caused
by I/O processing, image capturing, communications over
nodes and so on, we implement the pipeline using multiple
threads. So that, all stages can be executed concurrently.
However, there exists resource conflicts between stages in a
real system. To avoid the conflicts while keeping high per-
centage of CPU running time, we propose a tree structured
thread control model. As a result, We achieve the perfor-
mance as obtaining the full 3D volumes of a moving per-
son at about 12 frames per second, where the voxel size is
5× 5× 5 [mm3]. The effectiveness of the thread tree model
in such real-time computation is also proved by the experi-
mental results.

1. Introduction

The human activity monitoring is a major task in the
field of computer vision. And the detailed 3D shape of
the human body enables detailed analysis of the human
motion and helps greatly to understand the human ac-
tion. From the viewpoint of the image media technology,
the 3D shape model is also desired by the contents cre-
ation, such as the free viewpoint video or the 3D video
contents[11, 7, 5, 12, 8, 4, 1, 2, 13], and so on. Further-
more, to realize the high reality remote collaboration in the
virtual space[9], the 3D shape of the target must be acquired
in real time. Therefore, we focus on the real-time 3D shape
reconstruction of a moving person.

The volume intersection method[6] is well known to get
the full 3D shape of the target. Although only the visual hull
which approximately describes the true 3D shape can be ob-
tained by this method, the computation is simple and robust
for the real-time system. To accelerate the computation,
two kinds of approaches have been proposed: (1) the oc-
tree representation based acceleration[10] and (2) the plane-
to-plane projection based acceleration[3]. Since the octree
representation is optimized for binary silhouettes, there is
no room left to extend the binary silhouette images to gray
scale or color images. Also, for some sparse objects such as
a skeleton, the octree representation may not be compact.
Therefore, we employ the plane-to-plane projection based
approach as our basic method. The following summarizes
the algorithm of the plane-based volume intersection from
multi-viewpoint cameras system. Suppose that the 3D space

Proceedings of the Fourth IEEE International Conference on Computer Vision Systems (ICVS 2006)
0-7695-2506-7/06 $20.00 © 2006 IEEE

11

22

Base Slice

Base Silhouette

Figure 1. Plane-based volume intersection
method

is decomposed into parallel planes(slices) so that the shape
are calculated as the cross-sections on each slice. The algo-
rithm is also illustrated on Figure 1.

1. Base Silhouette Generation(BSG) : Project the object
silhouette observed by each camera onto a common
base plane (Figure 1 left, 1©).

2. Visual Cone Generation(VCG) : Project each base
plane silhouette onto the other parallel planes (Figure
1 left, 2©).

3. Visual Cone Intersection(VCI) : Compute 2D inter-
section of all silhouettes projected on each plane (Fig-
ure 1 right).

While the plane based volume intersection accelerate the
computation of the visual hull, it is obvious that the com-
putation of the “BSG” will break down if any input screen
of the multi-viewpoint cameras is nearly perpendicular to
the base plane. That is, in case of the base plane being stati-
cally determined, the computation can not be carried out for
arbitrary camera layouts.

In this paper, we propose the 3-base-plane volume inter-
section, which is an extension of the plane based volume
intersection. By this extension, not only the computational
breakdown due to the camera layout can be avoided, but
also the upper bound of the computational complexity of
the BSG can be estimated, which is important for the real-
time computation.

We also developed the parallel 3-base-plane volume in-
tersection algorithm and applied it on a PC cluster. In such
parallel system, it is important to keep high percentage of
the CPU running time on each node for a high performance.
On a real system, the CPU idle time is mainly caused by the
I/O processing, such as image capturing and communica-
tions over network interface. To decrease such idle time, we
propose the pipeline processing model on each node. That
is, divide the processing on each node into multiple stages
keeping I/O processing and computation separately. By im-
plementing the stages as multiple threads, all stages can be
executed concurrently. However, there exist two kinds of

problems which disturb the concurrency of the stages. The
first one is the hardware resource conflict on one PC, and
the second one is the extra wait caused by the asynchronous
communication over PCs. To get rid of these problems, we
propose the tree structured thread control module for the
threads scheduling. By this thread tree model, high per-
centage of CPU running time is achieved while avoiding
the resource conflicts and keeping the communication syn-
chronized.

In what follows, we first describe the 3-base-plane vol-
ume intersection and its parallelization in details. After that,
the thread tree control model is shown. Experiments of tun-
ing the executing order of the threads by changing the struc-
ture of the thread tree are also conducted. At last, the per-
formance evaluation experiments are shown to prove the ef-
ficiency of the proposed algorithm and the implementation
model.

2. The 3-Base-Plane Volume Intersection

2.1. Algorithm of the 3-Base-Plane Volume
Intersection

To avoid the fatal case of the base plane selection, we ex-
tend the base plane volume intersection to the 3-base-plane
method. We determine 3 mutually orthogonal planes as the
candidates of the base plane. In fact, the candidates are fixed
as the orthogonal planes parallel to the XY, YZ, ZX planes
of the world coordinates system respectively. During the
“BSG” phase of the plane based volume intersection, for
each camera, one of the candidates is selected as its base
plane according to the camera viewing direction. During
the next “VCG” phase, for each camera, we first decom-
pose the 3D space into isometric parallel slices, which are
parallel to its base plane. Also the distance between two
neighbor slices equals to the voxel size (= the pixel size of
the base silhouette). Hence, for any two cameras, the de-
composed slices sets are either identical or perpendicular to
each other.

After decomposing the 3D space, we generate the visual
cone of each camera by projecting its base silhouette onto
the slices. To get the visual hull of all cameras, all of the
visual cones, i.e. the silhouettes sets of all cameras need to
be intersected. For the cameras whose slices sets are iden-
tical, the intersection can be done by intersecting the sil-
houettes on each slice directly. However, for the cameras
whose slices sets are perpendicular, the conversion of the
silhouettes set is necessary. Notice that, since the 3 base
planes are mutual orthogonal, we can convert one type of
the slices set to another type by just switching the coordi-
nates without any heavy computation.

Then, after we have all visual cones calculated as sil-
houettes on one same slices sets, we can intersects all of the

Proceedings of the Fourth IEEE International Conference on Computer Vision Systems (ICVS 2006)
0-7695-2506-7/06 $20.00 © 2006 IEEE

silhouettes on each slice to get the visual hull of all cameras.
As a result, while the base plane for each camera is selected
as one of the 3 orthogonal planes, all input silhouettes are
combined to generate one visual hull. The 3-base-plane al-
gorithm is summarized as follows:

1. Base Plane Selection & Base Silhouette Genera-
tion(BSG): By the base plane selection, a set of cam-
eras are partitioned into 3 groups: cameras in each
group share the same base plane.

2. Visual Cone Generation (VCG): Project the base ob-
ject silhouettes onto each slice.

3. Visual Cone Conversion (VCC): Convert the visual
cone of each camera into the silhouettes on slices with
the same direction.

4. Visual Cone Intersection (VCI): All visual cones are
intersected to generate the complete 3D object shape.

It is clear that the fatal problem of the base plane selec-
tion can be avoided by selecting the base plane from 3 or-
thogonal candidates. Comparing with the plane based vol-
ume intersection, only the phase “VCC” is added and its
computational cost is little.

3. Parallelization of the 3-Base-Plane Volume
Intersection

For the parallel processing, we apply the PC cluster ar-
chitecture for the computation. The base silhouette duplica-
tion parallel algorithm is proposed and is shown as follows:

1. Image Capturing (IC)

2. Input Object Silhouette Generation (ISG)

3. Base Silhouette Generation (BSG) On each camera
node, generate the base silhouette on the selected base
plane.

4. Base Silhouette Duplication (BSD) Suppose the cam-
eras are grouped at least 2 groups, the base silhouette
duplication is conducted as follows.

(a) Assign computation nodes to the 3 camera
groups to balance the computational cost for the
visual hull generation of the 3 camera groups.

(b) Duplicate the base silhouettes among the nodes
in the same group.

5. Visual Cone Generation and Intersection (VCGI)
Within each group, divide the slices into subsets by the
node number of the group. On each node, generate the
subsets of the visual cone and compute the intersec-
tions of them to get the subset of visual hull on each
node.

6. Visual Hull Conversion (VHC) On each node, con-
vert the subset of the calculated visual hull to the cross-
sections perpendicular to one of the axes, for example,
the Z-axis.

7. Transfer Visual Hull (TVH) Transfer the converted
visual hull to the nodes in the camera group whose
base plane is perpendicular to the Z-axis.

8. Visual Hull Intersection (VHI) On each node which
received the visual hulls, compute the intersection of
the subset of the visual hulls to obtain the subset of the
3D shape.

On each node PC, the above parallel algorithm is realized
by pipeline processing, i.e. each phase is taken as one
stage, and the throughput can be increased greatly. For
the pipeline implementation, we proposed the thread three
model.

4. The Thread Tree Control Model for the Par-
allel Pipeline Implementation

4.1. Parallel Pipeline Processing Model

Table 1. Process Type on Camera & Compu-
tation Node

Step Computation Data I/O
Local I/O Remote I/O

1 IC
2 ISG
3 BSG
4 BSD
5 VCGI
6 VHC
7 TVH
8 VHI

By the parallel algorithm shown above, the computation
of the 3-base-plane volume intersection is decomposed onto
each PC of the cluster. The processes assigned on each PC
can then be categorized as follows, which is also summa-
rized in Table 1.

• Computation Phase

The computation phase is the step where the process
time is mainly spent for arithmetic instructions. For
the camera node, the steps of ISG, BSG, VCGI, VHC
and VHI are categorized as computation phases. For

Proceedings of the Fourth IEEE International Conference on Computer Vision Systems (ICVS 2006)
0-7695-2506-7/06 $20.00 © 2006 IEEE

IC

IC

IC

IC

BSG

BSG

BSG

BSG

ISG

ISG

ISG

ISG

TVH

TVH

TVH

TVH

VHI

VHI

VHI

VHI

BSD

BSD

BSD

BSD

VCGI

VCGI

VCGI

VCGI

VHC

VHC

VHC

VHC
WAIT WAIT

Process

Process

Process

Process

Process

Process

Process

Process

Process

Process

Process

Process

Process

Process

Process

Process

Capturing

n

Capturing

n

Capturing

n+1

Capturing

n+1

Capturing

n+2

Capturing

n+3

Capturing

n+4

Camera Node 1

Camera Node 1

Camera Node 2

Camera Node 2

Camera Node 3

Camera Node 3

Camera Node 4

Camera Node 4

time

SYNC SYNC

Processing
Interval

Figure 2. Sequential Processing Model on
Node PC

the computation node, computation phases consists of
the steps of VCGI, VHC and VHI.

• Data I/O

The data I/O phase is the step where the process time
is mainly spent for reading or writing data between the
memory and the I/O devices, for example, storages,
the capture board, the network card and so on. While
such processes need little CPU power on recent PC ar-
chitecture, the computation phases is stopped by these
processes. On a PC cluster system, the data I/O phases
consists of 2 types as local I/O and remote I/O. In the
above parallel algorithm, for the camera node, the lo-
cal I/O phase contains the IC step and the remote I/O
phases contain the BSD and TVH steps. For the com-
putation node, all data I/O phases are the remote I/O
phases which contain the BSD and TVH steps.

Notice that, while the time spent for the data I/O may
be shortened by applying high speed devices, the remote
I/O causes synchronization between nodes on a PC cluster,
and it may cause extra wait time between the computation
phases. Figure 2 shows an example of time flow for 4 cam-
era nodes executing the parallel 3-base-plane volume inter-
section. On the top of the figure, at each capturing time, the
nodes are synchronized. And after the capturing, the com-
putation is distributed on each node. We call the processing
between 2 capturing on each node as the processing cycle,
and the details of one processing cycle are shown at the bot-
tom of the figure. On each node, the processes are carried
out sequentially. At the start, all nodes are synchronized
for the image capturing. Since the computation amount of
BSG and VCGI depend on the size of the input silhouette
and the camera layout, the time for these phases differs on

IC(n)

BSG(n-2)

ISG(n-1)

TVH(n-6)

VHI(n-7)

BSD(n-3)

VCGI(n-4)

VHC(n-5)

Process

Process

Process

Process

Process

Process

Process

Process

Process

Process

Process

Process

Process

Process

Process

Process

Capturing

n

Capturing

n

Capturing

n+1

Capturing

n+2

Capturing

n+3

Capturing

n+4

Capturing

n+1

Capturing

n+2

Capturing

n+3

Capturing

n+4

Camera Node 1

Camera Node 2

Camera Node 3

Camera Node 4

time

IC(n+1)

BSG(n-1)

ISG(n)

TVH(n-5)

VHI(n-6)

BSD(n-2)

VCGI(n-3)

VHC(n-4)

IC(n+2)

BSG(n)

ISG(n+1)

TVH(n-4)

VHI(n-5)

BSD(n-1)

VCGI(n-2)

VHC(n-3)

IC(n+3)

BSG(n+1)

ISG(n+2)

TVH(n-3)

VHI(n-4)

BSD(n)

VCGI(n-1)

VHC(n-2)

Processing
Interval

Figure 3. Pipeline Processing Model on Node
PC

each node. While the end timing of these phases on each
node are different, the end timing of the BSD and the TVH
are synchronized by the communication between nodes. It
is clear that extra wait time is caused by the synchroniza-
tion, and such wait time will not be shortened even though
the time for BSD or TVH are shortened.

To get rid of such extra wait time, we propose the
pipeline processing model on each node PC. That is, on the
PC cluster, the parallel pipeline processing is carried out
like Figure 3 shows.

In the figure, the processing flow of 4 camera nodes is
shown on the top, and the details of the processing cycle on
one node is shown at the bottom. On each node, the 8 steps
of IC, ISG, BSG, BSD, VCGI, VHC, TVH and VHI are ex-
ecuted as 8 stages of the pipeline processing, i.e. each stage
is the processing step for each of the continuous 8 frames
respectively. In this parallel pipeline processing model, all
nodes are only synchronized for the image capturing at the
start of each cycle. After that, processes on each node are
carried out concurrently. Since both the computation phases
and the data I/O phases are executed simultaneously in one
cycle, the computation phases will not be stopped by data
I/O, including the remote I/O phases. That is, no extra
wait time is spent during one cycle in the parallel pipeline
processing model. Although the process for one frame is
accomplished in multiple cycles, the processing interval is
shortened from the summation of all steps + extra wait time
to the time of the stage which runs longest.

To realize the pipeline processing model shown in Fig-
ure 3 on each node, the concurrent programming platform is
required. While most recent operating systems support con-

Proceedings of the Fourth IEEE International Conference on Computer Vision Systems (ICVS 2006)
0-7695-2506-7/06 $20.00 © 2006 IEEE

current programming, there exist the following problems in
practice:

• Hardware Resource Conflict

As Figure 3 shows, the BSD and the TVH stages need
access to the network devices. If only one network
card is available for accessing, the two stages can not
be executed at the same time. That is the mechanism
for avoiding such resource conflict is required.

• Limitation of CPU Resource

In most recent operating systems, the concurrent pro-
gramming is realized by the time sharing scheduling
(TSS) mechanism. That is, each full program is split
into multiple executive units, and by switching the ex-
ecutive unit on CPU in a tiny time interval, multiple
programs are executed concurrently in appearance. On
such OS, the number of the units concurrently invoked
at exactly same time will never be greater than the
number of the CPU. Suppose each stage in Figure 3
is the executive unit, in practice, if the CPU number
is less than 8, all 8 stages will never be executed at
exactly same time, but be executed in some order de-
termined by the OS scheduling mechanism.

• Stage Order

Since not all stages can be invoked at exactly same
time in practice, the invoking order of the stages will
affect the process time of one cycle. If the time of
each stage is static, the optimal order can be deter-
mined beforehand. But as mentioned so far, the pro-
cess time changes dynamically while the shape of the
object changes. So the mechanism to change the stage
order dynamically is required.

As the summary, both the mechanisms of avoiding re-
source conflict and managing the stage order are required to
realize the parallel pipeline processing for the real-time 3D
shape reconstruction.

Furthermore, the parallel pipeline processing model is
suitable for a general parallel computation on a PC cluster
architecture because the extra wait time caused by the data
sharing can be got rid of. Also the problems of the resource
conflict and the stage order, i.e. the order of executive unit,
are also general problems for the concurrent programming
on most recent PCs.

In what follows, the system design to realize the parallel
pipeline processing on a PC cluster is shown in details.

4.2. Multi-thread Implementation of Mul-
tiple Stages

To realize the parallel pipeline processing on the PC
cluster, the following types of modules are designed.

m [0]1

m [1]1

m [0]2

m [1]2

m [0]3

m [1]3

M1M1 M2M2 M3M3

Memory Pool

Tree of Control Units

Root Control Unit

Control Unit Control Unit Control Unit

Figure 4. Overview of The Control Module

• Processing Module This module consists of the mem-
ory addresses for the input and the output, and the pro-
gram routines of one step in the parallel algorithm. The
processing module can be categorized as the following
3 types : Computation Module, Local I/O Module and
Communication Module. Each phase of the parallel al-
gorithm is implemented as one processing module and
is bound to one thread.

• Control Module To realize the parallel pipeline pro-
cessing, not only the input and the output of each mod-
ule should be assigned correctly, but also the mech-
anisms of avoiding resource conflict and managing
stage order should be realized. While each processing
module is bounded to one thread, the control module
is designed to manage the threads and to realize the
above tasks. The details of the control module will be
described in the next section.

4.3. Thread Tree Control Model for
Threads Scheduling

The overview of the control module is shown in Figure 4.
The control module consists of a memory pool and multiple
control units which are organized in a tree structure. The
details of these items are shown below.

By keeping double memory blocks for each phase, each
phase can be executed concurrently. By alternating the
buffer index between 0 and 1, the last output of the precede
phase is given to the subsequent phase as the input, thus just
realizes the pipeline processing. By applying this input &
output assignment for each cycle, each processing module
realizes one stage of the pipeline processing.

The control module consists of multiple control units and
each of them is just one thread. All units are organized as
a tree structure as shown below. Notice that the structure of
the root control unit differs from others and is shown later.

Proceedings of the Fourth IEEE International Conference on Computer Vision Systems (ICVS 2006)
0-7695-2506-7/06 $20.00 © 2006 IEEE

Common Control Unit The following shows the details
of the structure of the control unit.

• Parent Handle: The handle of the control unit which
is the parent of this control unit.

• Children Handle List: The list contains the handles of
the control units which are the children of this control
unit.

• Processing Module Handle: By this handle, one
processing module is bound with the control unit.
The computation or the communication routines of the
module can then be called by the control unit through
this handle.

• Control Routine: As mentioned above, the control
routine is the main routine of the thread. When the
thread is created, the following cycle is executed to re-
alize the controlling task.

1. Sleep until being waken up.

2. Call the routine of the bound module, using the
processing module handle.

3. When the routine of the bound module ends,
wake up all of the child control units.

4. Sleep until all child control units finish one cycle.

5. Assign the input and the output for the bound
module for the next cycle.

6. Inform the parent control unit the cycle finishing
of this unit.

Root Control Unit The structure of the root control unit
is shown below.

• Children Handle List

This is the same as the common control unit.

• Cluster Synchronization Routine

These routines are used to synchronize the pipeline
processing with other nodes in the PC cluster.

• Control Routine

When the program starts, the following cycle is exe-
cuted in the root control unit.

1. Call the cluster synchronization routine.

2. Wake up all of the child control units.

3. Sleep until all child control units finish one cycle.

As the summary, the following mechanisms are intro-
duced in the control module for the pipeline processing.

ROOT

BSD

TVH

BSGVCGI

VHC

IC

VHI

ISG

Figure 5. The Control Module for The Parallel
Pipeline

• By allocating double memory blocks for each process-
ing module and assigning them as the input and output
alternatively, memory access conflicting in the concur-
rent programming is avoided.

• By organizing the multiple threads, i.e. the control
units as a tree structure, the executing order can be eas-
ily controlled.

4.4. Control Module for the Parallel 3-Base-
Plane Volume Intersection

Figure 5 shows the detailed control module designed
for our system. The root control unit has 4 children
units1, which means when the processing cycle start, the 4
stages(“VHI”, “BSD”, “VCGI”, and “BSG”) will run con-
currently. Notice that while the “BSD” stage is a commu-
nication stage, other 3 stages are computation stages. That
is during the wait time caused by the “BSD”, the CPU will
not be idle for the computation threads are running. Further-
more, by assigning the other communication stage “TVH”
as the child of “BSD”, the network interface conflicts can
be avoided. Meanwhile, by starting the communication
stage(“BSD”) at the beginning of the processing cycle on
each node, the communication stages of all nodes are syn-
chronized and the wait time over nodes can also be short-
ened.

In what follows, the evaluation experiments are shown to
prove the efficiency of the proposed model.

5. Performance Evaluation

In this section, some experiments are conducted to eval-
uate the performance of the parallel pipeline processing.

1The reason for the number of “4” will be described later in the next
section.

Proceedings of the Fourth IEEE International Conference on Computer Vision Systems (ICVS 2006)
0-7695-2506-7/06 $20.00 © 2006 IEEE

5.1. Setup of Experiments

9 to 27 nodes PCs are utilized, and 9 of them are assigned
as camera nodes, i.e. the nodes with camera connected. The
hardware specification is shown in Table 2. The operating
system is GNU/Linux of version 2.4.18.

Table 2. System Specification
PC

CPU Xeon 3.6Ghz Dual
Memory 2GByte

Camera (Sony DFW-VL500)
Image size VGA(640 × 480)
Frame rate 15 fps (Ext. Trigger)

As described above, by applying thread tree model, mul-
tiple stages can be executed concurrently. However, on a
real system, only up to the number of CPUs threads can
be executed exactly parallel. On our system, by enabling
the Hyper-Threading feature, total 4 CPUs are detected by
the OS, and total 4 threads can be executed exactly con-
currently. So just 4 children units are assigned to the root
control unit in Figure 5.

In the following evaluation experiments, we have total 9
camera inputs for acquiring the full 3D shape of a moving
person. The number of PC nodes are changed from 9 to 27
sets.

5.2. Total Throughput

At first, the total throughput is measured, by setting the
space resolution as 10[mm] and 5[mm]2. The processing
time for one frame is measured and the average of 50 frames
is plotted in Figure6. From the graph, In both cases, the pro-
cessing time is saturated at about 80[msec], i.e. the through-
put is about 12 fps, which is limited by the capture rate of
the camera. While the camera (SONY DFW-VL500) sup-
ports the external trigger mode for the shutter synchroniza-
tion, the capturing rate is limited at 15 fps when having the
external trigger mode on. Furthermore, because the data
transfer timing is independent to the shutter timing, to syn-
chronize the capturing process of multiple cameras, the total
shutter interval is fixed at about 80[msec], i.e. about 12 fps.

5.3. Processing Time Analysis of the
Pipeline Stages

For the detailed processing time inside one processing
cycle, the time flow of each stage is measured. Figure 7

2That is, the voxel size is 10 × 10 × 10 mm3 and 5 × 5 × 5 mm3

respectively.

40

50

60

70

80

90

100

110

120

130

140

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Nodes Number

P
ro

ce
ss

in
g

T
im

e
[m

se
c]

Resolution = 5mm

Resolution = 10mm

Figure 6. Total Throughput of Parallel Volume
Intersection

4.54646

7.6648

0.00145

32.620408

22.803758

24.0207

1.886431

57.8826

0 10 20 30 40 50 60 70

VHI

TVH

VHC

VCGI

BSD

BSG

ISG

IC

Time [msec]

Figure 7. Snap Shot of Processing Time for
Each Stage, total nodes number = 27, resolu-
tion = 5[mm]

shows one snapshot of the processing time of each stage
within one cycle on one of the 27 PC nodes. The resolution
is 5[mm]. In the figure, each flowing bar shows the start and
the end timing of each stage. The data label on each bar is
the interval of the stage in millisecond.

As mentioned before, by enabling the Hyper-Threading
feature, up to 4 threads can be executed simultaneously,
which is proved by the graph in Figure 7. From the graph,
the “IC” time bar is the longest and dominates the total
throughput. This proves that the reason of the saturation
is the capturing rate of the camera.

Among the computational stages, the “VCGI” time bar
is the longest, which is about 30 [msec]. That is, the poten-
tial speed at the resolution of 5[mm] is about 30 fps if no
limitation of the capturing rate exists.

As a result, the computation rate is over the capturing

Proceedings of the Fourth IEEE International Conference on Computer Vision Systems (ICVS 2006)
0-7695-2506-7/06 $20.00 © 2006 IEEE

rate and the real-time computation of the full 3D shape is
realized on our system.

6. Conclusion

In this paper, we describe the 3-base-plane volume in-
tersection and its parallelization. By this method, the plane
based volume intersection can be conducted with arbitrary
camera layouts. This enables to carry out the volume in-
tersection with an active camera task, for example, the 3D
shape reconstruction while active tracking. For the parallel
pipeline implementation, we proposed the thread tree con-
trol model. The high performance of the algorithm and the
implementation model is proved by the evaluation experi-
ments.

Furthermore, while one stage is implemented as one
thread here, it could improve the throughput much better
to split heavy stages into multiple threads. It is obvious that
such extension can be achieved easily and dynamically by
the thread tree control model.

References

[1] E. Borovikov and L. Davis. A distributed system for real-
time volume reconstruction. In Proc. of International Work-
shop on Computer Architectures for Machine Perception,
pages 183–189, Padova, Italy, Sept. 2000.

[2] G. Cheung and T. Kanade. A real time system for robust 3d
voxel reconstruction of human motions. In Proc. of Com-
puter Vision and Pattern Recognition, pages 714–720, South
Carolina, USA, June 2000.

[3] R. T. Collins. A space-sweep approach to true multi-image
matching. IEEE Computer Vision and Pattern Recognition,
pages 358–363, 1996.

[4] T. Kanade, P. Rander, and P. J. Narayanan. Virtualized re-
ality: Constructing virtual worlds from real scenes. IEEE
Multimedia, pages 34–47, 1997.

[5] I. Kitahara, Y. Ohta, and T. Kanade. 3d video display of
sports scene using multiple video cameras. In Meeting on
Image Recognition and Understanding, vol 1, pages 3–8,
2000.

[6] A. Laurentini. How far 3d shapes can be understood from
2d silhouettes. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 17(2):188–195, 1995.

[7] W. Matusik, C. Buehler, R. Raskar, S. J. Gortler, and
L. McMillan. Image-based visual hulls. In Proc. of SIG-
GRAPH 2000, pages 369–374. ACM Press/Addison-Wesley
Publishing Co., July 2000.

[8] S. Moezzi, L. Tai, and P. Gerard. Virtual view generation for
3d digital video. IEEE Multimedia, pages 18–26, 1997.

[9] S. N., Y. Y., K. N., E. Y., and K. K. 3d modeling and display-
ing system for volume communication. In 4th International
Symposium on Advanced Fluid Information and Transdisci-
plinary Fluid Integration, pages 159–164, 2004.

[10] M. Potmesil. Generating octree models of 3d objects from
their silhouettes in a sequence of images. Computer Vi-
sion,Graphics, and Image Processing, 40:1–29, 1987.

[11] S. M. Seitz and C. R. Dyer. Toward image-based scene rep-
resentation using view morphing. In Proc. 13th Int. Conf. on
Pattern Recognition, Vol. I, pages 84–89, 1996.

[12] S. Sugawara, Y. Suzuki, G.and Nagashima, M. Matsuura,
H. Tanigawa, and M. Moiriuchi. Interspace: Networked vir-
tual world for visual communication. pages 1344–1349, De-
cember 1994.

[13] S. Vedula. Image Based Spatio-Temporal Modeling and
View Interpolation of Dynamic Events. PhD thesis,
Robotics Institute, Carnegie Mellon University, Pittsburgh,
PA, September 2001.

Proceedings of the Fourth IEEE International Conference on Computer Vision Systems (ICVS 2006)
0-7695-2506-7/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

