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Abstract: This paper is aimed at presenting a new algorithm for full 3D shape reconstruction and online
free-viewpoint rendering of objects in water. The key contributions are (1) a new calibration model for the
refractive projection, and (2) a new 3D shape reconstruction algorithm based on shape-from-silhouette (SfS)
concept. We also propose an online free-viewpoint rendering system as a practical application.
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1. Introduction

This paper is aimed at presenting a new algorithm for full

3D shape reconstruction and online free-viewpoint rendering

of objects in water. The applications include (1) education

and entertainment such as free-viewpoint 3D visualization

of underwater scenes for digital aquariums in future, and

(2) 3D analysis of underwater objects and events such as

fertilized eggs and their developments.

Suppose we have an object in a water tank of unknown

shape. The object is observed by sparsely arranged multi-

view cameras via a curved refractive surface of the tank as

shown in Fig. 1. The goal is to reconstruct the 3D shape

of the object from its projections with refractive distortions

for online free-viewpoint rendering.

The key contribution of this paper is twofold. We first

introduce our calibration model in order to deal with the

refractive projection. We then provide a new 3D shape re-

construction algorithm based on shape-from-silhouette (SfS)

concept. We also propose an online free-viewpoint rendering

system as a practical application.

2. Related work

While many studies on full 3D shape reconstruction have

been done for objects in regular environments [9,15,16], only

a few of them challenged objects in water. The main diffi-

culty lies in the calibration of its refractive projection.

One straightforward approach is to model the geometry of

the refractive layers as is [3,10]. This can provide physically

meaningful models of projection, but has two limitations.

Firstly they require assumptions on the refractive surface
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Fig. 1 3D shape reconstruction of objects in water from multi-
view images with refractive distortions. Left: a tripod
(upside down) in a fishbowl. Right: reconstructed 3D
shape.

geometry such as planarity. Secondly even for the simplest

planar case, it is known that each 3D-to-2D forward pro-

jection requires solving a 12th degrees of equation [1], and

hence it is not suitable for online 3D processing.

The second approach is appearance-based methods which

learn the mapping from 2D pixels to their corresponding 3D

rays in water [8, 17] by means of regression. This approach

can work even for curved refractive surfaces without know-

ing their geometries, as long as training samples for learning

are provided and a valid mapping function exists for such

dataset (Fig. 2). In [17], Trifonov et al . proposed a calibra-

tion for a cylindrical water tank. They mounted the tank

on a machine-controlled turntable to generate the training

data, and employed a tomographic reconstruction algorithm

for colored fluids. However this approach has a drawback in

its asymmetric computation costs for the forward and back-

ward projection computations, while most of popular cam-

era models in computer vision such as the perspective model

require fairly symmetric costs. That is, obtaining the 3D ray

in water corresponding to a given 2D pixel requires trivial

computations, while obtaining the projection of a 3D point
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Fig. 2 Appearance-based calibration. The relationship between a
pixel p and the ray ℓ which passes through p and the cam-
era center o (left) is modeled by a function f : p → ℓ with-
out knowing the geometry of the refractive layers (right).

in water to the 2D image coordinate requires an iterative

non-linear optimization per projection.

Our method falls in the appearance-based one. Compared

with [8, 17], we propose a generalized and practical calibra-

tion process without depending on special devices such as

turntables. We also propose a 3D shape reconstruction al-

gorithm which well suits with the pros and cons of this cal-

ibration model, and is capable of online, real-time synthesis

of free-viewpoint images. The proposed reconstruction algo-

rithm is based on the SfS concept [2,13]. Unlike conventional

methods [5,6,14], our new algorithm computes the intersec-

tion of visual frusta, not visual cones, in order to account

for the refractive distortions using our calibration model.

3. Appearance-based calibration of pro-

jections via curved refractive surfaces

The goal of the appearance-based calibration is to obtain

a function f : p → ℓ which takes a pixel p in the camera

image and returns the corresponding 3D ray line ℓ in the

water (Fig. 2).

The first design factor is how we parameterize the 3D ray

in water. We use two distinctive 3D points, called near and

far points hereafter. In addition, we force each of the near

and the far points for all pixels to lie on 3D planes called

near and far clips respectively. This is a crucial point for

our 3D shape reconstruction as described later.

The second point is how we provide the training dataset.

The key factor is the field coverage. That is, given a train-

ing dataset, the learned mapping should be able to cover the

entire region of the water tank in the image.

To this end, we employ a dual chess pattern on a plane as

shown in Fig. 3. The bottom side is in water and captured

via the refractive projection. The top side is kept observable

directly from the camera. This design can limit the feasible

size of the tank, but we believe it is a practical solution for

regular configurations.

Suppose we can detect and identify the top and bottom

chess corners in images Ii(i = 1, . . . , n) as pki (k = 1, . . . ,K)

and qji (j = 1, . . . , J) respectively. Then the camera pose Ri

and ti w.r.t. the top chess pattern can be calibrated using

Zhang’s algorithm [18] as λk
i p

k
i = A(RiP

k + ti), where λk
i

is the projective depth, A is the intrinsic parameter given a

priori, and P k is the model coordinate of the chess corner.

Also we can estimate the relative rotation and translation

of the two chess coordinates by capturing the board outside

the water beforehand. Namely P = RQ + t, where P and

Camera

Dual chessboard

Captured image Fishbowl

Fig. 3 Dual chess pattern

Q are the model coordinates of the top and bottom chess

coordinate systems, and R, t describe their relative rotation

and translation. By combining these two equations, we have

cj = Ri(RQj + t) + ti, (1)

where cj is the 3D position of the chess corner Qj in the

camera coordinate system.

3.1 Mapping from 2D projections to 3D points on

a plane

Up to this point, we could establish a correspondence be-

tween a 3D point cji described in the camera coordinate

system and its projection qji in the image Ii. Here points

cji (j = 1, . . . , J) are on a 3D plane in water by definition.

As proposed in [17], learning the mapping to a particular

plane in the camera coordinate system can be done by know-

ing a set of corresponding triplets ⟨qji , Q
j , cji ⟩(j = 1, . . . , J).

That is, we establish a mapping function f ′
i : q → Q first,

and then transform Q into the camera coordinate system by

Eq. (1). The function f ′
i should be chosen to reflect the ge-

ometry of the refractive surface. For a sphere-like fishbowl

(Fig. 3), we employed cubic polynomial functions

XQ =

3∑
α=0

3−α∑
β=0

ai,αβu
α
q v

β
q ,

YQ =

3∑
α=0

3−α∑
β=0

bi,αβu
α
q v

β
q ,

(2)

where XQ, YQ is the model coordinate of a 3D point Q on

the chess plane, uq, vq is the pixel position of a point q in Ii,

and ai,αβ and bi,αβ are the fitting parameters. Here ai,αβ

and bi,αβ are estimated by solving the linear equations of

Eq. (2) using more than 10 training pairs of Qj and qji [17].

Once obtained the mapping f ′
i : q → Q, applying the trans-

formation of Eq. (1) yields the mapping fi : q → c.

Notice that for water tanks of other shape classes, we need

to design functions for each of them.

3.2 Generalized mapping from 2D projections to

3D lines using two distinctive 3D points

Given a pixel q in an image Ii, the mapping fi : q → c

returns a 3D position in water c whose projection via the

refractive layers matches with q. In general, however, we

cannot expect fi works well for pixels outside the hull de-

fined by the original training samples qji (j = 1, . . . , J), since
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it does an extrapolation. Let this hull be referred to as the

feasible region Ri of fi.

The goal here is to provide a unified mapping f : q → c

which works for any q inside the union of the feasible re-

gions R =
∪

i=1,...,N Ri while forcing c be on a single plane

to satisfy the requirement on our 3D shape reconstruction

algorithm described later.

Suppose we have n images of the chess board in differ-

ent poses in water, and also each pixel q is covered by nq

feasible regions Riq (iq = 1, . . . , nq). Then the 3D ray ℓq

back-projected from q to water is given as the 3D line which

minimizes the distances to the 3D points ciq obtained by

the mapping fiq defined for Riq . This ℓq is simply given by

PCA. That is, a point µq where the line ℓq passes through

is given as the centroid of ciq , and the direction dq is given

as the eigenvector corresponding to the largest eigenvalue of

CC⊤, where C =
(
c′1 · · · c′iq · · · c′nq

)
and c′iq = ciq − µq.

Up to this point, we can obtain the 3D ray ℓq in water as

dqt + µq using a parameter t for any pixel q in R. Finally

we convert this parametric representation to the one using

two distinctive points on the near and far clips as mentioned

earlier.

As described in the next section, any combination of the

near and far clips will work as long as these two planes

encage the target volume between them. Here we propose to

employ the two planes such that they are orthogonal to the

optical axis of the camera and their distance is minimized

while encaging all the original training points cji between

them. In other words, the near and far clips are orthogo-

nal to the optical axis and coincide with the training points

closest to and farthest from the camera respectively.

We believe this configuration is likely to minimize the vol-

ume between the planes while satisfying the constraints, and

hence contributes to reduce the 3D reconstruction cost in the

next section.

4. Shape-from-silhouette for objects in

water for online novel-view synthesis

As is well known, SfS can be implemented in different

styles for their own goals. In this paper, we propose a yet

new concept visual-frusta-intersection designed for our cal-

ibration model.

The appearance-based calibration in Section 3 has two

important characteristics as we reviewed above: (1) asym-

metric computation costs for the forward and backward pro-

jection computations, and (2) 3D ray space representation

by points on parallel virtual planes called near and far clips.

In particular, the first point indicates the following points.

(1) 3D shape reconstruction algorithms involving a large

number of 3D-to-2D forward projections are not applica-

ble. That is, implementations by voxel sampling, e.g . voxel-

based shape-from-silhouette, require huge numbers of non-

linear optimizations and hence they become intractable. In-

stead, we should employ a pixel-sampling-based one relying

on 2D-to-3D backward projections. (2) Intersection compu-

tations of visual cones should be done without involving 3D-

to-2D forward projections. That is, pixel-sampling-based al-

gorithms utilizing the epipolar geometry for the intersection

computation [5, 6] are not suitable for our scenario.

As a reasonable solution satisfying these points, we em-

ploy an algorithm based on Constructive-Solid-Geometry

(CSG) [4]. Our algorithm computes a visual frustum,

not the visual cone, for each camera as a triangle mesh,

and then computes their intersections as the AND oper-

ation of CSG. In particular, by implementing CSG pro-

cess with image-based approaches [7,11], this visual-frusta-

intersection method can produce novel views in real time as

shown in Section 5.

4.1 Algorithm

Suppose an object in water is captured byN cameras, and

produces N -view silhouettes Si(i = 1, . . . , N). Given such

N -view silhouettes, the goal here is to generate N visual

frusta fed to CSG process.

Algorithm 1 and Fig. 4 illustrate the outline of the pro-

posed algorithm. Each of the cameras is supposed to be

calibrated beforehand. The calibration parameters of ith

camera include the extrinsic parameter Ri, ti, and the 2D-

to-3D mapping functions fN
i and fF

i . Here fN
i and fF

i

return 3D points on the virtual near and far planes respec-

tively.

The first step is to represent the silhouette contour as a

set of closed curves Ŝi. We employ the non-zero winding

rule [4] to identify the holes in order to make the following

mesh generation process simpler. That is, curves defined in

CCW order fill their interior, while those in CW order cull

them out.

The second step is to generate triangles to form the

side surface of the visual frusta. Let sji be jth closed

curve in Ŝi, and sji be discretized into a chain of points

sji (t) (t = 1, . . . , |sji |). Back-projecting sji (t) by fN
i and

fF
i yields corresponding 3D points sji (t)

N and sji (t)
F on

the near and far clips respectively. By defining trian-

gles using triplets of points ⟨sji (t)
N , sji (t)

F , sji (t+ 1)F ⟩ and
⟨sji (t)

N , sji (t+ 1)F , sji (t+ 1)N ⟩ in this order, thanks to the

non-zero winding rule, all the triangles will direct their nor-

mals to the outside of the frusta by definition. This is a

prerequisite for computing CSG correctly.

The third step is to generate triangles to form the top

and bottom planes of the visual frusta. Since the mapping

fN
i and fF

i are designed to return 3D points lie on planes,

sji (t)
N and sji (t)

F form closed polygons on the near and

far clips respectively. Therefore, this process is identical to

tessellating the polygon on a plane into triangles, and is

commonly available as a GPU function.

Finally, by using triangles generated in the 2nd and the

3rd steps, the visual frusta Vi is defined as a triangle mesh

which is ready to be fed to CSG.

Notice that the proposed algorithm requires small compu-

tation costs only: the bitmap silhouette to the contour rep-

resentation, 2D-to-3D projections using the mapping func-

tions, and the triangle mesh generation. In other words,
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Fig. 4 Visual frustum generation. The silhouette Si is first converted to a set of closed
curves Ŝi. By back-projecting each contour point sji (t) by fN

i and fF
i , the vi-

sual frustum is produced as a triangle mesh consisting of side-surface triangles
⟨sji (t)N , sji (t)

F , sji (t+1)F ⟩ and ⟨sji (t)N , sji (t+1)F , sji (t+1)N ⟩, and the base poly-

gons defined by sji (t)
N and sji (t)

F .

Fishbowl

Object

Cameras

Fig. 5 Experiment setup. An object (tripod, upside down) in a
water tank (fishbowl) is captured by five cameras.

Fig. 6 Input images

most of the computation costs on generating the visual hull

are offloaded to the CSG part. Hence, as we show in the

next section, it is possible to achieve an online novel view

synthesis by using GPU-accelerated image-based CSG.

5. Evaluation

This section shows an implementation of the proposed

algorithm for online real-time novel view synthesis. As dis-

cussed in the previous section, we utilize an image-based

CSG [7, 11] as the GPU-accelerated renderer of the visual

hull defined as the intersection of the visual frusta.

Figs. 5, 6 and 7 show an overview of the setup, an ex-

ample of the captured input images, and 3D shapes recon-

structed with and without accounting for the refractive pro-

jections. This comparison clearly demonstrates that our re-

(a) Proposed (b) Without refraction correction

Fig. 7 3D reconstruction results. (a) 3D shape by proposed
method. (b) 3D shape by SfS without refraction correc-
tion. Compared with (a), (b) is much thicker than the
real 3D shape, due to the barrel-like distortion caused by
the water tank.

construction is much closer to the real object shape.

The processing costs for the visual frusta generation and

rendering were approximately 10ms and 20ms per frame,

using Intel Core-i7 3.07GHz CPU and nVidia GeForce GT

640 GPU. These values indicate that the proposed scheme

is capable of online, real-time novel view synthesis*1.

6. Limitations

The proposed calibration algorithm has clear limitations

on the size and the shape of the water tank. That is, the size

of the tank cannot be so large in practice in order to capture

the calibration object in the air. Plus, to model the map-

ping from 2D pixels to 3D planes by a function, the shape

of the tank should have a symmetric structure such as cylin-

drical or spherical ones. Otherwise, we can consider using

a pixel-wise LUT to represent the mapping as a brute-force

solution for arbitrary shape.

Besides, the proposed visual-frusta-intersection is based

on the shape-from-silhouette concept which returns the vi-

sual hull as a rough estimation of the real 3D shape. To

obtain better 3D shapes, we need to develop a new algo-

rithm which estimates the photo hull [12] by exploiting the

*1 The source code is available under GPLv2 at http://vision.
kuee.kyoto-u.ac.jp/~nob/proj/ibvfi/.
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Algorithm 1 Shape-from-Silhouette in Water as Visual-Frusta-Intersection

Input: Multi-view silhouettes Si(i = 1, . . . , N), camera calibration parameters Ri, ti, f
N
i , fF

i .
Output: Visual frusta Vi of all cameras and the visual hull V of the object as their intersection.
for each image i = 1, . . . , N do

Convert the silhouette Si into a contour-oriented representation Ŝi. Suppose Ŝi consists of |Ŝi| closed curves.

for each closed curve j = 1, . . . , |Ŝi| do
Generate triangles as the side surface of the visual frustum by back-projecting the jth 2D closed curve into water using fN

i and
fF
i . Let T j

i be the set of the generated triangles.

Generate the near- and far-base planes by back-projecting the jth 2D closed curve into water using fN
i and fF

i , and tessellate
them into triangles. Let Bj

i be the set of the generated triangles.
end for
Let Vi be the union of all triangles in T j

i and Bj
i . This is the mesh model of the visual frustum corresponding to ith silhouette.

end for
Compute the intersection of all visual frusta Vi(i = 1, . . . , N) by CSG to obtain the visual hull V .

texture information while accounting for the refractive dis-

tortions.

7. Conclusion

This paper proposed a 3D shape reconstruction algorithm

called visual frusta intersection for objects in water. The

key idea is to develop an appearance-based calibration which

allows obtaining the 3D ray in water corresponding to a pixel

in captured images, without knowing the geometry of the re-

fractive layers lying between the camera and the object.

While the proposed calibration has limitations as de-

scribed in the previous section, we believe this method helps

us to be one step closer to realizing a rich 3D sensing for

objects in water, and its applications cover a wide field in-

cluding education, entertainment, research, and so on as we

discussed in the introduction.

Our future work includes photo-hull reconstruction,

texture-mapping, 3D shape estimation of semi-transparent

objects, etc.
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