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ABSTRACT
When we are watching videos, there exist spatiotemporal
gaps between where we look and what we focus on, which
result from temporally delayed responses and anticipation
in eye movements. We focus on the underlying structures of
those gaps and propose a novel method to predict points of
gaze from video data. In the proposed methods, we model
the spatiotemporal patterns of salient regions that tend to
be focused on and statistically learn which types of the pat-
terns strongly appear around the points of gaze with respect
to each type of eye movements. It allows us to exploit the
structures of gaps affected by eye movements and salient mo-
tions for the gaze-point prediction. The effectiveness of the
proposed method is confirmed with several public datasets.

Categories and Subject Descriptors
I.2.10 [Artificial Intelligence]: Vision and Scene Under-
standing

Keywords
Saliency map; eye movement; spatiotemporal gap

1. INTRODUCTION
This study presents a novel method of learning to predict

where we look in videos, which take into account of reaction
delays and anticipation in eye movements. The proposed
method predicts the points of gaze based on the underlying
structures of spatiotemporal gaps between the points of gaze
and salient regions that tend to be focused on around the
points. It allows us to significantly improve the performance
of gaze point prediction for several public datasets.

Eye movement understanding has a great potential in many
research fields such as human computer interaction, inter-
face design, computer graphics and computer vision. Eyes
sometimes act as a proxy for explicit user inputs in recom-
mender systems [30]. Furthermore, researchers have long
been engaged on a problem of analyzing implicit mental
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Figure 1: Results of our gaze-point prediction. The
input frames in this figure are parts of the pub-
lic dataset in [13]. Yellow points indicate ground
truths of gaze points, where each point corresponds
to one individual subject in [21]. (A) input frames
that subjects watched. They provide spatiotemporal
gaps between the points of gaze and the bus possibly
being focused on. (B) Gaze-prediction maps. Lumi-
nance indicates the degree of gaze-point existence.

states from eyes, such as interests [6], attentive states [29],
intentions [24], proficiency [4], etc. Another direction is
to predict where humans look from image and video data.
It provides a valuable help for content design [25], auto-
matic image cropping [23], etc. In this context, modeling vi-
sual attention mechanisms, practically as a form of saliency
maps [2], is now a long-standing topic in the fields of com-
puter vision and visual psychology [1, 9, 10, 16].

Apart from a great success in the studies on saliency maps
for images, those for videos still have a particular and inter-
esting issue when trying to predict gaze: a spatiotemporal
gap between where humans look and what they focus on.
That is, a point of gaze (where they look in a video frame)
sometimes does not always correspond to that of covert at-
tentional foci (what they focus on in the frame) when we
are watching a video. In Fig. 1 (A), a bus went from the
left side to the right, and parts of gaze points (depicted as
yellow points) were following it. Even if the bus has gone
out of the frame, some gaze points remained at the right of
the frame. Here we can find a spatiotemporal gap as a form
of reaction aftereffects; covert attentional foci were possibly
on the bus in the previous frames while looking at irrele-
vant locations at the current frame. Riche et al. have tried



to overcome such a gap by broaden saliency maps based on
morphological operations and smoothing [21].

On the other hand, the spatiotemporal gaps between points
of gaze and those of covert attentional foci can form particu-
lar structures derived from various aspects of eye movements
and salient regions being focused on, as will be reviewed in
Sec. 2. We therefore focus on those structures and propose a
novel method to predict where humans look in videos based
on the modeled gap structures. While we follow a traditional
framework of gaze point prediction based on a supervised
learning framework such as [1, 10], the proposed method
involves the following contributions:

1. We develop a novel model named gap structure model
(GSM) to describe the underlying structures of spa-
tiotemporal gaps. The GSM extracts salient regions
around the points of gaze as the candidates of atten-
tional foci and describes the gaps (relative positions to
the points of gaze) and motion patterns of the regions.
The fitting results of the GSM are utilized as a feature
for the prediction.

2. We extend traditional learning-based methods like [1,
10] by taking into account of the types of eye move-
ments that also affect the gaps. Specifically, we learn
a model for gaze-point prediction with respect to each
type of eye movements in a training phase and inte-
grate outputs of the models into a single gaze-prediction
map in a prediction phase (Fig. 1 (B)).

Particularly in the GSM, we introduce a codebook of sim-
pler and localized patterns that efficiently describes gaps and
motion patterns of salient regions. That is, gap structures
are modeled by the mixture of localized patterns based on
the codebook. Then, the training phase can be formulated
as a problem of finding the types of localized patterns that
strongly appear around the points of gaze.

Note that our method is not a family of saliency maps
that find conspicuous regions from images and videos but
a pure gaze prediction technique. It indicates “this point is
likely to be looked at with a certain type of eye movements
because there exist salient regions around the point with
reasonable gaps and motion types”, which gives us reason-
ing to several points that conventional saliency maps have
always regarded as a false negative. The applications of
this study include proficiency estimation [4] and detection
of developmental disorders [27], which need to know or to
predict where humans actually look accurately rather than
to extract conspicuous regions from images and videos.

Fig. 2 presents the overview of this study. Before intro-
ducing the proposed method, we first review several related
studies and conduct some preliminary experiments to show
that there surely exist gaps in Sec. 2. Then, Sec. 3 presents
the GSM. It consists of the extraction of spatiotemporal pat-
terns of salient regions and the modeling of the patterns
based on the combination of localized patterns as described
in Step 1 of the figure. With a codebook of the localized
patterns, the gap structures can be described as a vector
consisting of an activation for each of the localized patterns.
In Step 2, we extract activation vectors in multiple scales so
as to cope with various salient motions around the points of
gaze. We then train a discriminative model from the acti-
vation vectors with respect to each type of eye movements.
Finally, given a newly observed video, we evaluate the degree

of gaze-point existence with all the models and integrate the
outputs to obtain a single gaze-prediction map (Sec. 4).

2. PRELIMINARY STUDY

2.1 Related work
Empirically, there are many cases where we encounter a

spatiotemporal gap when we are watching a video. For ex-
ample, we sometimes fail to orient our eyes to salient objects
captured in peripheral vision when the objects have already
moved or gone out of the frame before the shift of gaze. Be-
sides, when focusing on salient objects in fast motion, we
can also observe the spatiotemporal gaps since it is hard to
keep our eyes on the object regions.

Several studies have mentioned a gap between a point
of gaze and that of covert attentional foci. As introduced
in [7], the relationship or causality between attention and
eye movements has been well studied from the early 20th
century. Generally, eye movements are believed to require
preceding shifts of visual attention in several cases: for ex-
ample, the preview effect is a phenomenon in reading that
humans fixate a word in a sentence while attending about-
to-fixated word in their periphery [20]. In addition, disas-
sociation of attention and saccadic eye movements, that is,
the situation that humans move their eyes and their spatial
attention to different locations, is discussed in [7].

In this study, we extract salient regions from saliency
maps as a candidate for attentional foci. Since most saliency
maps highlight possible locations where humans pay“location-
based” (pixel-wise) attention, spatial gaps can be observed
when they are paying “object-based” attention. Object-
based attention, incremental grouping [22] for example, is
a mechanism that spreads attentional resource within an
object formed by Gestalt grouping. In such a situation, hu-
mans have the possibility to fixate locations which are not
highlighted by the location-based saliency maps.

With regard to temporal gaps, we can predict a trajectory
of object motions and attend the destination before the ob-
ject arrives. Smooth pursuits can be indeed initiated before
the beginning of the object motions [7]. In addition, experi-
mental studies have revealed that there was a future field (or
predictive remapping) mechanism in visual attention, which
play an important role to predict where target would ap-
pear next [16]. As a study on a reaction delay, Rashbass has
measured a saccadic response toward an object with sudden
motions [19]. This study has revealed that humans required
saccades with a reaction delay before smooth pursuits if they
were trying to attend an object in fast motion.

Consequently, spatiotemporal gaps reflect many aspects
in eye movements, and these can differ for the types of eye
movements and those of salient motions. In other words, the
spatiotemporal gaps can form a particular structure based
on the types of eye movements and salient motions.

2.2 Statistical analysis of eye movements
This section is aimed at statistically analyzing how much

spatiotemporal gaps exist in public datasets and how they
are affected by the types of eye movements. As a mea-
sure of the matches between the points of gaze and salient
regions, this study introduces one of traditional saliency
map metrics, normalized scanpath saliency (NSS) [18]. Let
p = (x, y, t) be a point in a spatiotemporal volume of videos
where (x, y) ∈ R2 is a spatial location and t ∈ N is a frame
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Figure 2: Overview of the study. The input frames in this figure are parts of the public dataset in [13].

ID. A saliency map is denoted as S : R2 → R, where the
degree of salience at point (x, y) is S(x, y). The NSS eval-
uates the correlation between saliency maps (prediction re-
sults) and the points of gaze (ground truth labels), where a
higher NSS indicates better results. Specifically, the degree
of salience at point (x, y) in S is first evaluated as follows:

V (S, x, y) =
S(x, y) − µ(S)

σ(S)
, (1)

where µ(S) and σ(S) are the mean and the standard de-
viation of the degree of salience in S, respectively. Then,
the NSS score is calculated by averaging evaluation score
V (S, x, y) over all the gaze points in frame t, Pt = {pn =
(xn, yn, tn) | n = 1, . . . , Nt, tn = t} where Nt is the num-
ber of samples. When we deal with videos, that is, we have
a sequence of saliency maps S1, . . . , ST and corresponding
gaze point sets P1, . . . ,PT , we calculate NSS scores for all
the pairs of St and Pt and average them.

In order to investigate a spatiotemporal gap statistically,
we extend the NSS by calculating a mean and a standard
deviation of salience in local patches of several different sizes
with the center at (x, y). If NSSs at the points of gaze are
high, the points of gaze possibly matches those of attentional
foci. Otherwise, there are more salient regions around the
gaze points; in other words, there exist gaps.

Since the degree of gaps can be affected by the types of
eye movements, we divided a dataset into subsets based on
the 4 types of eye movements: fixations (FX), slow pursuits
(SP), fast pursuits (FP) and saccades (SC). The ascending
order of eye motion speeds is FX<SP<FP<SC, and we
annotated the type labels of eye movements based on the
3 thresholds of the eye-motion speeds, where the thresholds
were derived by calculating 25, 50 and 75 percentile points
of eye motion speed samples collected in a dataset.

In experiments, we adopted the following public datasets:

CRCNS-ORIG [8] (CRCNS) 1 contains 50 videos with
a variety of genres including surveillance videos, game
plays, TV news and commercials. Each video was
watched by 4-6 subjects who were instructed to“follow
the main actors and actions”.

1
http://crcns.org/data-sets/eye/eye-1

ASCMN database [21] (ASCMN) 2 contains 24 videos
consisting of outdoor scenes, surveillance videos, videos
of human crowds, etc. The videos in the database in-
clude parts of CRCNS [8], Vasconcelo’s database [15]3

and a standard complex-background video surveillance
database [13]4. Parts of them contain objects with ab-
normal or sudden motions, which can possibly provide
spatiotemporal gaps in eye movements. Each video
has 10 subjects who were not instructed particularly
during experiments.

We also adopted the following three models of saliency maps:

Itti’s model [9] (IT) is one of traditional saliency maps,
which now serves as a baseline in many studies. It cal-
culates center-surround differences of various features
such as color and motion at multiple scales and fuses
them into a single map. We chose color, intensity, ori-
entation and motion features so as to take dynamic
changes in videos into account.

Cheng’s model [3] (RC) is a family of salient region de-
tection techniques that extract a region with statistical
irregularity in a given image. The model first segments
images into small superpixels [5] and evaluates their
salience based on the rarity of color.

Torralba’s model in Judd et al. [10] (TR) is a simple
saliency model based on the rarity of responses from
various subband pyramids, which is utilized in [10].

Table 1 demonstrates NSSs in a variety of combinatorial
conditions. Note that we resized images into 80 × 60 pixels
and used patches of 11 × 11 and 31 × 31 pixels to calculate
NSSs. The results demonstrate that NSSs tend to decrease
as an eye-motion speed increases. It indicates that there can
be larger spatiotemporal gaps when eyes move faster.

In addition to the above finding, the NSSs tend to decrease
as the sizes of patches get smaller. It indicates that gaze
points capture globally salient regions and gaps should not

2
http://www.tcts.fpms.ac.be/attention/?article38/

saliency-benchmark
3
http://www.svcl.ucsd.edu/projects/background_subtraction/

ucsdbgsub_dataset.htm
4
http://perception.i2r.a-star.edu.sg/bk_model/bk_index.html



Table 1: NSS in various combinatorial conditions.

datasets
Saliency models

(original NSS)
Types 31×31 11×11

CRCNS

IT (0.75)

FX 0.51 0.14
LP 0.44 0.11
FP 0.34 0.07
SC 0.25 0.04

RC (0.91)

FX 0.59 0.16
LP 0.52 0.14
FP 0.42 0.11
SC 0.34 0.09

TR (0.73)

FX 0.6 0.2
LP 0.53 0.16
FP 0.48 0.14
SC 0.39 0.12

ASCMN

IT (0.62)

FX 0.38 0.09
LP 0.31 0.05
FP 0.21 0.01
SC 0.17 0.01

RC (0.59)

FX 0.34 0.09
LP 0.26 0.05
FP 0.21 0.04
SC 0.18 0.03

TR (0.39)

FX 0.29 0.08
LP 0.24 0.05
FP 0.15 0.02
SC 0.14 0.02

Saliency maps 
in N(p)

Interframe differences

...

...

+ + +

- - -

Spatiotemporal neighborhood N(p)

History of 
salient regions in N(p)

1st PC Time

Spatiotemporal patterns 
of salient regions: L(p)

Sum up salience 
in the patch 
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Time

1st PC

1st PC
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Figure 3: Extracting gap structures.

be so large. That is, we can look for salient regions being
focused on in the neighborhood around the points of gaze.

3. GAP STRUCTURE MODEL
Now we present a model of gap structures observed be-

tween points of gaze and those of covert attentional foci, the
gap structure model (GSM). As discussed in Sec. 2, there are
salient regions that are possibly focused on in the neighbor-
hood around the points of gaze, and the degree of gaps can
be affected by the types of eye movements and salient mo-
tions. Taking them into account, we first present a method
to extract spatiotemporal patterns of salient regions in a
neighborhood around a certain point (Sec. 3.1). Given a
neighborhood around the points of gaze, these patterns indi-
cate both gaps and motion patterns of salient regions, which
we refer to as gap structures.

Then, the GSM describes the patterns based on a code-
book consisting of simple and localized patterns, localized
primitive patterns (LPP). The codebook of LPPs allows us
to describe complicated gap structures such as “there is a
moving region until the point is looked at and at the same
time a static region nearby the point for all the time” in a
simple and efficient manner (Sec. 3.2).

3.1 Extracting spatiotemporal patterns of salient
regions

Let us denote a spatiotemporal neighborhood around p =
(x, y, t) as N (p) = {q = (u, v, τ) | ∥x − u∥ ≤ δx, ∥y − v∥ ≤
δy, ∥t−τ∥ ≤ δt}, where δx, δy, δt define the size of the neigh-
borhood. Then, spatiotemporal pattens of salient regions
are observed in a sequence of saliency maps cropped by
N (p). If points of gaze are given to p, these patterns de-
scribe gap structures as the combination of motion patterns
of salient regions and their relative positions to p, i.e., gaps.

To visualize the gap structures and make the latter pro-
cedures easier, we describe the spatiotemporal patterns in
N (p) by the patterns in a 2-d Euclidean space. Specifically,
we look for an axis in a spatial domain, which describes vari-
ation of salient regions the best, and integrate the degree of
salience along the axis. As depicted in Fig. 3, we first cal-
culate inter-frame differences of saliency maps in N (p) and
sum them up over time. The output of the above procedure
provides the history of salient regions. Then, we approxi-
mate it by massive samples and calculate its 1st principal
component as a direction of the maximum variation in the
history. Finally, we sum up the degrees of salience along the
direction of the 1st principal component for every frame to
get 2-d representation of the spatiotemporal patterns, L(p).

Fig. 4 depicts some examples of gap structures and corre-
sponding situations. To visualize the locations and motion
patterns of salient regions clearly, the spatiotemporal pat-
terns of salient regions are represented by contour maps.
These examples demonstrate that the points of gaze (red
points) are close to salient regions but are not on the re-
gions. In examples of smooth pursuits (SP and FP), regions
are sometimes in motion, which indicate subjects tended to
follow the target. Moreover, there are sometimes multiple
salient regions in neighborhoods.

3.2 Learning localized primitive patterns
To model spatiotemporal pattern L(p) with LPPs, we in-

troduce an efficient description based on a codebook of LPPs
obtained in a data-driven fashion. Let us denote a vectorized
version of L(p) as l(p) ∈ RK

+ . Then, a codebook consisting
of I LPPs is described as M = {mi ∈ RK

+ | i = 1, . . . , I},
where mi is a vectorized version of LPPs defined in the same
spatiotemporal volume as l(p). Using this codebook, l(p) is
transformed into a(p) = (a1, . . . , aI)

T ∈ RI
+, where ai is an

activation of LPP mi. Namely, high ai around the points
of gaze shows that there is a spatiotemporal gap between a
point of gaze and salient regions, where the location and the
motion pattern of the regions are described by mi.

To learn codebook M, we adopt a non-negative matrix
factorization (NMF) [11]. The NMF serves as an effective
tool in various tasks such as face analysis [11], music tran-
scription [26] and document clustering [28]. It decomposes
a non-negative matrix into two non-negative factors, where
one factor consists of structured bases and the other has
sparse activation coefficients. Let us introduce N samples of
spatial patterns L = (l(p1), . . . , l(pN )) ∈ RK×N

+ . Then, the

NMF derives the two factors as L = MA, where M ∈ RK×I
+

represents a sequence of LPPs M = (m1, . . . , mI) (that
is, the codebook M) and A ∈ RI×N

+ consists of activation
coefficients, A = (a(p1), . . . , a(pN )). Note that the NMF
requires us to set I manually. We estimate I based on a
cross validation scheme in experiments.

Fig. 5 illustrates an example of codebook M. We obtain
M and A by adopting the multiplicative update rules [12]
implemented in [14].
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Figure 5: Examples of LPPs in a codebook.

4. PREDICTING WHERE WE LOOK FROM
SPATIOTEMPORAL GAPS

Once we obtain a codebook of LPPs, we can predict the
degree of gaze-point existence based on a supervised learning
framework. As will be introduced in Sec. 4.1, we statistically
learn which LPPs strongly appear around the points of gaze
from a given sequence of saliency maps and corresponding
eye movement data in a training phase. Then, we obtain a
sequence of maps containing the degree of gaze point exis-
tence at each pixel (which we refer to as a gaze-prediction
map) in a prediction phase.

As mentioned in the second contribution in Sec. 1, we
extend the prediction framework by considering the rela-
tionships between gap structures and eye movement types.
Specifically, we learn the models with respect to each type
of eye movements, and integrate their outputs into a single
gaze-prediction map (see Sec. 4.2).

4.1 Learning to predict where we look
As depicted in Fig. 4, the number of salient regions and

their motion patterns can differ depending on the scales of
neighborhood. Although they can all attract our attention,
we cannot know which ones are actually focused on. We thus

jointly consider multiple neighborhoods of H scales, Nh(p)
(h = 1, . . . , H) to address this problem.

Specifically, the spatiotemporal patterns of salient regions
in Nh(p) is first described as Lh(p) and its vectorized version
as lh(p). We individually learn a codebook with respect to
each of the scales, M1, . . . ,MH , after resizing each Nh(p)
into the same patch size. Then, activation vectors for a scale
h is described as ah(p) ∈ RIh

+ where Ih is the size of the
codebook for scale h. Finally, we simply concatenate ah(p)

as a(p) = (a1(p)T, . . . aH(p)T)T ∈ RI′
+ where I ′ =

P

h Ih,
to consider multiple scales jointly.

Given activation vector a(p), the degree of gaze-point ex-
istence at p can be evaluated as follows:

F (p) = βTa(p), (2)

where β ∈ RI′
is a vector of model parameters. In a train-

ing phase, we fist give a binary label {1,−1} to p, where
1 and −1 show positive (there exists a point of gaze) and
negative (there does not), respectively. Then, we estimate
β by learning a discriminant function (e.g., [1, 10]), g(p) =
sgn(βTφ(p)+β0) where β0 is a bias factor. Positive samples
are collected from a set of points where subjects looked in a
dataset while negative samples are from points with a lower
probability of being looked at. In a prediction phase with
newly observed videos, we evaluate F (p) at each pixel p in
the videos to obtain a sequence of gaze-prediction maps.

4.2 Introducing eye movement types
In this paper, we deal with the types of eye movements

(FX, SP, FP and SC in Sec. 2.2 for example) under the
assumption that each type of eye movements occurs with
equal probability, independently and identically for spatial
and temporal directions for simplicity. Let us introduce a
set of eye movement types E = {e1, . . . , eW } to give label
e(p) ∈ E to p. We then train the discriminant function
introduced in Sec. 4.1 individually from the positive samples
with label ew ∈ E and negative samples to obtain parameter



βew
. Based on the assumption presented above, we average

model output Few (p) = βT
ew

a(p) over ew to evaluate the
degree of gaze point existence at p:

FE(p) =
1

W

W
X

w=1

Few (p). (3)

5. EXPERIMENTS
We verified the effectiveness of our gaze-point prediction

with the public datasets CRCNS and ASCMN and models
of saliency maps IT, RC and TR, which are introduced in
Sec. 2.2. We used Eq. (2) (GSM) and Eq. (3) (GSM+E)
as proposed methods. The obtained gaze-prediction maps
were evaluated based on the NSS defined in Sec. 2.2.

5.1 Implementation
The proposed methods with the GSM have the following

parameters to be trained:

• Scales of neighborhood N1(p) . . .NH(p) and the num-
ber of scales, H.

• LPP codebooks M1, . . . ,MH and their sizes I1, . . . , IH ,

• W−1 thresholds of eye-motion speeds to give the types
of eye movements, and the number of the types W .

• Model parameters βe1
, . . . , βeW

for W types of eye
movements.

H was empirically defined as H = 2 and the spatial sizes
of N1 and N2, i.e., (δx, δy) were defined as (5, 5) (11×11-
pixel patch) and (15, 15) (31×31-pixel patch) in 80 × 60
pixel-frames, respectively. The temporal sizes of N1 and
N2, i.e., δt were both 0.4 sec. In addition, the number of
eye movement types was set to W = 4. Those types corre-
spond to FX, SP, FP and SC in Sec. 2.2. On the other hand,
M, I, βe1

, . . . , βeW
and W − 1 thresholds were estimated in

a training dataset. W − 1 thresholds were given as 25, 50,
and 75 percentile eye-motion speeds in the dataset. When
training a discriminant function, we adopted a Fisher’s dis-
criminant analysis so as to evaluate the effectiveness of our
methods with a simple learning technique.

5.2 Evaluation schemes and baseline methods
In order to evaluate the generalization ability on videos,

we conducted a leave-one-out scheme by splitting a dataset
based on video IDs (and that is, we did not distinguish sub-
jects). Specifically, we first divided the dataset consisting of
C videos into C−1 training videos and 1 test video. From a
training subset, we collected positive samples from a set of
points where subjects looked. As for negatives, we randomly
selected samples of the same size as positives from videos.
Since the number of samples at each video frame is at most
the number of subjects, the selection criterion can be re-
garded as the same as selecting from locations with a lower
probability of being looked at. Then, we trained parameters
so as to get the highest area-under-the-curve (AUC) score of
a receiver operating characteristic curve with false-positive
vs. true-positive rates. With a trained model, we evalu-
ated the degree of gaze-point existence for all the pixels in
the test subset to calculate NSS scores. We tested all the
possible combinations of test and training videos and finally
calculated an averaged NSS score over all the test subsets.

Table 2: NSS scores.
ORIG BS BS+E GSM GSM+E

CRCNS
IT 0.75 0.86 0.85 1.14 1.21
RC 0.91 1.00 1.02 1.15 1.21
TR 0.73 0.86 0.89 1.10 1.15

ASCMN
IT 0.62 0.74 0.74 0.88 0.90
RC 0.59 0.66 0.65 0.76 0.77
TR 0.39 0.47 0.47 0.77 0.82

As a baseline method, we modified the method proposed
in [21] for the sake of fairness. The original method basically
utilized broadened saliency maps to fill spatiotemporal gaps.
In our experiments, baseline method BS followed this idea
and smoothed saliency maps, where the smoothing parame-
ter was tuned so as to get the highest AUC score in a train-
ing subset. In addition, we regarded the degree of smoothed
salience as a feature value for each pixel, and learn it in a
discriminant function. BS can be also extended by train-
ing models with respect to eye movement types and average
them over the types (BS+E). Consequently, we evaluated
4 methods, BS, BS+E, GSM and GSM+E under 2 datasets
× 3 saliency models conditions.

5.3 Results and discussions
Table 2 shows NSS scores for all the conditions. Note that

ORIG in the table shows NSS scores obtained from original
saliency maps, which were utilized to find salient regions in
the GSM. These results demonstrated the effectiveness of
our proposed methods with the GSM. Although the NSS
scores of ORIG, BS and BS+E had a variation with re-
gard to saliency maps, the scores of our methods were very
competitive. This fact indicates the independence of our
methods to input saliency maps.

Fig. 6 depicts some qualitative results. In the 1st, 5th
and 6th rows of the figure, targets were in motion and parts
of gaze points were following them. These situations can
provide a gap between salient regions in saliency maps (in
the 2nd column) and gaze points. Our methods, GSM and
GSM+E, can take into account of such a gap and show a
higher degree of gaze-point existence at the points where
subjects looked. On the other hand, when eye movements
contain no gaps such as in the 4th row, original saliency
maps and baseline methods provided higher scores.

Fig. 7 visualizes gap structures that well discriminated
positive samples (points of gaze) from negatives (random
points) by contour maps. We reconstructed the structures
by giving coefficients of the trained discriminant function as
activations of LPPs (higher values in coefficients contribute
to the higher probability of gaze-point existence) and sum-
ming up the activated LPPs. In the smaller scale, salient
regions tend to precede the points of gaze at any type of
eye movements and saliency maps. Meanwhile for the larger
scale, there are salient regions after the points of gaze for
most of the cases. It indicates that subjects were somewhat
predictive to salient regions, but could not accurately follow
the regions without a temporal delay.

Comparing GSM+E with GSM, highlighted regions are
more sparse in GSM+E as shown in Fig. 6. We can ob-
serve such outputs when one of prediction scores for differ-
ent types of eye movements is particularly high. For this,
Fig. 8 visualizes each of model outputs by the difference
of color. In the 3rd row, we gave each pixel a 3-d value



Input image Saliency map (IT) BS+E GSM GSM+E

Input image Saliency map (RC) BS BS+E GSM GSM+E

Input image Saliency map (TR) BS BS+E GSM GSM+E

BS
NSS: 0.03 NSS: 1.62 NSS: 1.76 NSS: 2.76 NSS: 3.95

NSS: 0.91 NSS: 1.12 NSS: 1.12 NSS: 1.60 NSS: 2.17

NSS: 1.05 NSS: 1.19 NSS: 1.28 NSS: 1.35 NSS: 1.62

NSS: 1.78 NSS: 1.52 NSS: 1.63 NSS: 1.17 NSS: 1.06

NSS: -0.45 NSS: 0.21 NSS: 0.18 NSS: 2.07 NSS: 2.49

NSS: -0.47 NSS: -0.17 NSS: -0.14 NSS: 1.28 NSS: 1.47

Figure 6: Qualitative results and corresponding NSS scores averaged over subjects in a frame. The input
frames are parts of the public dataset in [8] (2nd row), [15] (1, 3, 5th rows) and [13] (4, 6th rows). Luminance
indicates the degree of gaze-point existence. Yellow points indicate a set of gaze points, where each point
corresponds to an individual subject in [21].

(Fe1(pn), 0.5(Fe2(pn)+Fe3(pn)), Fe4(pn)) in an RGB order
where e1, e2, e3, e4 correspond to FX, SP, FP and SC, re-
spectively. When there is a salient target in motion, model
outputs of pursuits (as shown in green) become much higher
than the others, and they make the final outputs sparse. In
addition, there was a small probability of observing saccades
when there was the target in motion, which tried to attend
the target (points at the left side of the frame in the 3rd
column), or to escape from the target (those at the bottom-
right in the 4th column).

Finally, this study introduced a simple assumption for
eye movement types, that is, each type can appear with
equal probability, independently and identically for spatial
and temporal directions. The prior probability on the types
of eye movements can be biased, for example the saccadic
eye movements can be less observed than other types. In
addition, eye movement types at a certain spatiotemporal
point can be statistically conditioned by those at its spa-
tiotemporal neighborhood. In the experiments, the degree
of improvements in NSSs from GSM to GSM+E is smaller
than that from ORIG to GSM, and there is still room for
further improvements by considering the aspect above. One
promising approach is to introduce state-space models such
as [17]. It assumes a Markov property for occurrences of

eye movement types and gaze positions. By taking this into
account, we can dynamically select models to be used based
on the eye movement types which are likely to appear.

6. CONCLUSIONS
This study presented a method of gaze-point prediction

based on the modeling of gap structures between the points
of gaze and those of covert attentional foci. There are par-
ticular structures of gaps that depend on the types of salient
motions around the points of gaze and those of eye move-
ments. The proposed method involves those aspects by sta-
tistically learning the localized primitive patterns of salient
regions with respect to each type of eye movements. We
will extend our methods to consider dynamic changes of eye
movement types in future work.
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