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Quad-Tree based Image Encoding Methods for

Data-Adaptive Visual Feature Learning
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Abstract: Visual feature learning is fundamental to many computer vision tasks. State-of-art methods adopt an image

block based multilayer framework to learn hierarchical feature representations. However, the image block is not adap-

tive for low-level feature extraction and the image pyramid based hierarchical models are neither adaptive nor flexible

enough to learn high-level features. To solve these problems, this thesis exploits the image spatial and hierarchical

structure using Quad-Trees and employs them for local feature analysis and for hierarchical feature learning. To eval-

uate the reliability of our methods, we also conduct feature learning in other challenging situations: feature learning

with small training data and feature learning in dynamic environments (moving camera videos). Face recognition and

motion segmentation are utilized as research backgrounds for algorithm evaluation. Experimental results demonstrate

the effectiveness of our methods.

1. Introduction

Visual feature learning refers to the process of learning good

feature representations, which can be used for many artificial in-

telligence (AI) level applications, such as computer vision, sta-

tistical pattern recognition, natural language processing, medical

imaging, etc.. It acts as the bridge between raw images and learn-

ing algorithms, which transforms the raw image data into a good

representation and then transfers the feature representation into

machine learning algorithms. This thesis seeks to develop data-

adaptive feature learning algorithms, which can effectively and

efficiently learn good, semantically meaningful features for a va-

riety of image data.

Visual feature learning is a challenging problem for long be-

cause of the high dimensionality and high variability of images,

which can take a variety of forms such as static images, video se-

quences, views of multiple cameras, etc.. Existing visual feature

learning algorithms can be briefly divided into: holistic and local

based methods. The holistic methods extract a single feature vec-

tor from the whole image region and the local methods extract a

series of feature vectors (bag-of-features) from a number of local

subregions. While holistic methods can preserve the global shape

and overall structure of the image data, local methods have better

performances in coping with local deformations. Recently, it is

argued that global feature learning based on local feature analy-

sis is preferable than holistic or local based methods. State-of-art

algorithms adopt a local patch based multi-layer framework to

learn hierarchical feature presentations, which are named as “hi-

erarchical feature learning” [1] methods. High-level features are
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formulated by the composition of low-level features according to

a deep architecture. Although existing methods have achieved

many impressive results, they still have some unsolved issues,

which motivates the work of this dissertation.

1.1 Challenging issues

There have been many important issues in developing visual

feature learning algorithms. The most important issues include

the learning architecture (features learned from the planar im-

age surface or from hierarchical architectures), data availability

(small training data or large data), image characteristics (static

image or dynamic video sequence). Considering the two stages

of a typical hierarchical learning pipeline: low-level feature ex-

traction and high-level feature integration, one can conceive the

central issues in training hierarchical learning architectures are:

• How to extract lower-level features in order to provide ade-

quate input to higher-level features;

• How to adjust higher-level features to make good use of

lower-level features.

Based on these two issues, the main challenges faced by most

feature learning algorithms can be summarized as below:

Challenge 1: Robust local feature analysis: Existing al-

gorithms usually employ image block based low-level feature

extraction, where the image region is partitioned into blocks

(patches) of the same size and low-level features are extract from

each block with the same weight. However, the block based

method is straightforward and not adaptive enough to fit the im-

age statistics, espeically for natural images taken under complex

situations.

Challenge 2: Sophisticated deep structure for hierarchical

feature learning: Several deep architectures have been proposed

in the literature. Early works utilize fully-connected neural net-

works, where the parameters of low-level features are learned
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based on backpropgation [2]. Since the backpropgation is very

likely to get stuck in local minima, these method do not achieve

success finally. Recent works utilize local-connectivity based net-

works, which are defined by image spatial pyramid. However, the

image pyramid is a complete tree structure, which is not flexible

and not adaptive to investigate the image hierarchical structure.

Challenge 3: Small training data availability: Existing vi-

sual feature learning algorithms usually require a large number

of training samples. However, this can not meet in many practi-

cal applications due to the difficulty in data collection. The small

training data leads to the small sample size (SSS) problem arising

from the small number of training samples compared to the high

dimensionality of the feature space. The SSS problem challenges

existing methods severely.

Challenge 4: Difficulty in video based feature learning: While

existing visual feature learning algorithms can be applied to static

images relatively easily, it is not so video sequences especially

when the video is captured by a moving camera. In the mov-

ing camera videos, local object motions and camera motion and

mixed and dependent with each other making the segmentation of

local object motions difficult. The video based feature learning is

a more challenging problem.

1.2 The core-aspect of this thesis

A major factor that prevents the better performance of state-of-

the-art algorithms might have been the lack of image structure.

This thesis aims at solving the above mentioned challenges by

explicitly predicting the image structure using Quad-Trees and

employ the learned image structures in feature learning to make

the learning procedure data-adaptive and more powerful. Specifi-

cally, instead of arbitrarily defining block based local region par-

tition and image spatial pyramid, we use Quad-Tree to explicitly

learn data-adaptive local subregions for low-level feature extrac-

tion and data-adaptive tree structure for high-level feature inte-

gration. The benefits are three-fold: (1) the data-adaptive block

based image region partition makes the low-level feature extrac-

tion be region specific and locally adapt to the image statistics; (2)

the data-adaptive tree structure makes the deep architecture more

flexible and data-adaptive for hierarchical feature learning; (3) the

Quad-Tree structure can define the weights of local-subregions

making the composition of low-level features to high-level fea-

tures more effectively and accurately.

1.3 The main contributions of this thesis

The main contributions of this thesis can be summarized as

follows: Towards the aforementioned four feature learning situa-

tions, we develop four Quad-Tree based image encoding methods

for data-adaptive visual feature learning, including:

Algorithm 1: Feature learning from data-adaptive blocks de-

composed by Quad-Tree (Section 2): For the local feature

analysis, we develop a feature learning algorithm using data-

adaptive blocks decomposed by Quad-Tree. Instead of arbitrarily

dividing the image region into fixed-size image blocks (patches),

Quad-Tree partitions the image region into local subreigons of

variant sizes according to the feature distribution in an image

dataset. Features extracted from data-adaptive blocks can be di-

rectly transferred to machine learning applications or act as low-

level features for more sophisticated feature learning algorithms

(e.g hierarchical learning). As it is difficult to find an appropriate

threshold for Quad-Tree partition, we define a set of thresholds

and get a set of Quad-Tree partitions accordingly. The Quad-Tree

partitions on Uchimura database are illustrated in Fig.1.
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Fig. 1: An example of Quad-Tree partitions on a face image in

Uchimura database. (Copyrighted by ICPR2012 [3])

Algorithm 2: Hierarchical feature learning using Quad-Tree

structure of images (Section 3): After local feature analysis, the

next step is on how to combine local features together. We de-

velop a hierarchical feature learning algorithm using Quad-Tree

structure of images. In contrast to image pyramid based hier-

archical models, Quad-Tree defines a data-adaptive image tree

structure for hierarchical feature learning. And the parameters

of local subregions can be defined according to the tree struc-

ture, which makes hierarchical feature learning more efficient.

The overview of Quad-Tree based hierarchical feature learning

is shown in Fig.2.

Fig. 2: Hierarchical feature learning using Quad-Tree structure of im-

ages. (Copyrighted by CRC Press / Balkema [4])

Algorithm 3: Feature learning from enlarged training data

encoded by Quad-Tree for Small Sample Size problem (Sec-

tion 4): To solve the SSS problem, we develop a training data

extension method by generating new samples encoded by Quad-

Trees and then perform base classifier ensemble to improve the

final recognition accuracy. In contrast to existing ensemble meth-

ods which are performed using the original small training data,

our method can generate more diverse base classifiers. More-

over, since existing ensemble methods suffer from the Diver-

sity/Accuracy dilemma by integrating all base classifier together,
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we develop a base classifier selection algorithm using a tailored

0–1 Knapsack solution, which alleviates the dilemma effectively.

While the 0–1 Knapsack solution is developed for feature selec-

tion in Algorithm 1, this tailored 0–1 Knapsack solution is em-

ployed for classifier selection. The main idea of data extension is

illustrated by Fig.3.

Fig. 3: Feature space expansion through generating new samples [5].

Algorithm 4: Feature learning in dynamic environments us-

ing Helmholtz-Hodge decomposition and Quad-Tree (Section

5): To make feature learning in video sequences more naturally,

we develop a motion segmentation method for moving camera

videos. This method can segment and recover object motions

from the scene effectively. As Quad-Tree is sensitive to the dy-

namic background, it is rather difficult to apply Quad-Tree based

image region partition directly in dynamic environments. To

solve this problem, we introduce an amended Helmholtz-Hodge

Decomposition first for camera motion compensation. After cam-

era motion compensation, a data-driven Quad-Tree partition can

be performed in the rested motion field for object motion seg-

mentation. The framework of HHD and Qua-Tree based motion

segmentation is shown in Fig.4.

Fig. 4: Illustration of the feature learning algorithm in dynamic en-

vironments using HHD and Quad-Tree, which HHD is performed for

camera motion compensation and Quad-Tree is performed for object

motion segmentation.

In the next, we describe each algorithm with experimental re-

sults in Sections 2–5, respectively. The relationship among these

algorithms is specified in Section 6 followed by the conclusion in

Section 7.

2. Feature Learning from Data-Adaptive

Blocks Decomposed by Quad-Tree

Local feature analysis is the first step of many feature learning

algorithms. This section describes our feature learning algorithm

from data-adaptive blocks decomposed by Quad-Tree.

2.1 Problem definition and related works

Principal Component Analysis (PCA) [6] and Linear Discrim-

inant Analysis (LDA) [7] are two widely used appearance based

face recognition algorithms. However, being based on a global

description, local variations, such as motion deformation, illu-

mination changing, data missing again form a major problem.

Multi-subregion fusion methods ( [8], [9]) were proposed as a

solution for this problem. They divide the image into a set of dis-

joint subregions, perform recognition on each subregion and fuse

the results.

Existing well-known local subregion methods can be mainly

divided into two types: (1) block (patch) based algorithms, which

divides an image region into regular blocks or utilizes a sliding

window to locate subregions for feature extraction. These meth-

ods are very straightforward and not adaptive to image statistics.

(2) hand-designed local subregion based methods. These meth-

ods provide several hand-designed spatial regions for feature ex-

traction. For example, in [10] a set of 30 regions were designed

for face recognition, see Fig. 5. They showed better performance

than block based methods. However, these hand-designed regions

are highly depending on the prior-knowledge of human beings.

The process is time consuming, incomplete and usually relying

on data registration.

Fig. 5: The hand-designed 30 regions [10].

Apart from the image region partition, another problem with

existing local subregion based methods is on how to select subre-

gions to build up the best combination of them. Some local sub-

regions may not appropriate for classification. Integrating classi-

fication results of inappropriate subregions may reduce the final

classification accuracy. To address these two problems, this sec-

tions develops a data-adaptive image region partition method us-

ing Quad-Trees and introduce a local subregion selection method

based on 0–1 Knapsack solution.

2.2 Algorithm architecture

The algorithm can be described as follows: first, Quad-Tree de-

composes an image region into multiple local sub regions recur-

sively according to an image homogeneity criterion function. In

order to make the Quad-Tree partition adapts to variant databases,

we perform Quad-Tree partition on a template image instead of

original images. Then, a local subregion selection algorithm is

proposed for the fusion of the results.
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2.2.1 Modelling the feature distribution using a template

The generation of template image is motivated by the idea of

LDA. which encodes the discriminative feature distribution by

maximizing the between-class scatter matrix S b and minimizing

the within-class scatter matrix S w ( See Eq. 1). The template

face, which is defined by Eq. 2, represents the distribution of dis-

criminative features across the face region for all the images in

a database. That is, the total variance of entire database equal to

the variance of the template (see Eq. 3). Example template faces

for four face databases are shown in Fig. 6.
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∑

i=1

Ni(µi − µ)(µi − µ)
T ,

S w =

c
∑

i=1

∑

xk∈Xi

(xk − µi)(xk − µi)
T ,

(1)

template = diag(
S b

S w
), (2)

totalVar = variance(diag(
S b

S w
)), (3)

where µ denotes the mean face of all face classes, µi is the mean

face of class Xi, Ni denotes the sample number of class Xi, and xk

represents the k-th sample of class Xi.
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Fig. 6: Templates for four databases: (a) Uchimura 3D, (b) ATT

(renamed as ORL), (b) IFD, (c) JFFE database. (Copyrighted by

ICPR2012 [3])

2.2.2 Quad-Tree based image region partition

Quad-Tree decomposition is performed based on a criterion

function defined in Eq.4. If the variance of a region R (block)

or one of its four sub-blocks (subR) is higher than a threshold

variance (T ∗ totalVar) , then R is split into smaller blocks. The

variance here actually relates to the density of discriminant fea-

tures in a region.















doS plit(R) = totalVar(R) > T ∗ totalVar,

doS plit(R) = doS plit(R)|doS plit(subR).
(4)

The difficulty in Quad-Tree decomposition is how to define an

appropriate threshold T . Local variances usually vary on differ-

ent databases, so one universal threshold is not a good idea in

our method. Even in one database, it is rather difficult to find

the most appropriate threshold to get the best partition. In this

dissertation, we define a set of thresholds instead of a single one.

The thresholds are defined between a maximum value and a mini-

mum value in a descending order. The maximum value is the start

point where the template image begins to partition. The mini-

mum value is the end point, where the template is partitioned into

smallest blocks completely. The maximum value and the mini-

mum value are also depending on databases. The template is split

into less and bigger blocks for a large threshold, but into more and

smaller blocks for a small threshold. Given a set of thresholds,

we can get a set of Quad-Tree partitions with different resolu-

tions (the partitions are from coarse to dense). Figure 1 illustrates

the Quad-tree partitions on the template image of Uchimura 3D

database [11].

2.2.3 Data-adaptive block based feature extraction

For each Quad-Tree partition, we re-organize the face images

in the original image dataset according to the partition result. As

explained above, larger partitions (blocks) mean that the density

of discriminative features in them is low. Thus, there is no need to

keep its original size. We will do downsampling on large blocks

(the size is larger than the smallest size) by resizing them to a

smaller size ((d/2) × (d/2)), where d is the width of large blocks

(in pixel). For smallest blocks mean they the density of their dis-

criminant features are high. Thus, we will not do down-sampling

on them. Finally, block resizing result in a set of new images

whose sizes are smaller than original face images. For each Quad-

Tree partition, we will get a new set of images, from each ap-

pearance based feature extraction method is applied to generate

feature subspace. In this dissertation, we use PCA+LDA for the

extraction of features, where PCA is utilized for dimension re-

duction and LDA is employed to generate discriminant features

in the PCA feature subspace.

2.3 Selection of local subregions

The subregions obtained from Quad-Tree partitions represent

portions of the face region in different locations. Their perfor-

mances (recognition accuracy) are different from each other since

they contain variant discriminative features. A single subregion

is usually unlikely to achieve the best performance since the dis-

criminative features contained in each single suregion are usually

limited. To solve this problem, integration of the classification

results of multiple subregions may work better than a single sub-

region. However, it is difficult to find the best combination of all

subregions, some subregions may not be appropriate for classi-

fication. For example, in our method, some thresholds may not

be good for Quad-Tree partition. Thus, the classification results

of such local subregions are not accurate. In our work, motivated

from the idea of 0-1 Knapsack problem, we covert the problem

of subregion selection and fusion into an optimization problem,

which is explained in the following section.

2.3.1 0–1 Knapsack algorithm

The conventional 0–1 knapsack problem is depicted like this:

given a set of items and a knapsack, each item has a mass and a

value while the knapsack has its own capacity. We would like to

select some items and put them into the knapsack so that the total

value of selected items can be maximized while the total weight

should not beyond the capacity of K. This can be interpreted as:

max(value(K))

sub ject to mass(K) ≤ tc
(5)

where value(K) and mass(K) represent the total value and total

mass of selected items in K, and tc denotes the capacity of K. This

problem is very similar to our problem. Given a set of subregions

S = S 1, S 2, · · · , S n, each subregion S i has two parameters: the

size Wi and the discriminant power Vi. We aim at choosing a sub-
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set O of S such that the total size of selected subregions does not

exceed the capacity of O and the total value is maximized. The

size (in pixel) and discriminative power are similar as the weight

and the value in the conventional 0–1 Knapsack problem. As

mentioned before, the discriminative power of a subregion can be

represented by the density of feature distribution. Thus, we use

the trace of S i
b
./S i
w in a subregion to represent its discriminant

power (see Eq.6 ).

Vi = trace(
S i

b

S i
w

) (6)

The capacity of the subset O is defined by the total size of the 30

regions illustrated in Fig. 5 since we want to investigate whether

our method can work better than or equal to the performance

of the state-of-the-art [10] under the same computational cost.

Like the conventional 0–1 Knapsack problem, we can also use

dynamic programming to solve this optimization problem.

2.4 Experimental rvaluation

2.4.1 Datasets

Our method was evaluated on seven databases: a 3D database

(Uchimura 3D database [3]) and six widely used 2D databases:

IFD [12], JFFE database [13], ORL (pre-name: ATT database

[14]), Extended Yale (Yale2) [15], AR [16], and FERET [17].

The face data in these databases are under varied conditions in-

cluding a variety of head poses (Uchimura, ORL, IFD, AR ), il-

lumination changing(Uchimura, ORL, IFD, Yale2, AR, FERET),

partial data missing (Uchimura), facial expressions (ORL, IFD,

JFFE, Yale2, AR, FERET), and facial details (e.g. with glasses or

not: ORL, AR, FERET).

Fig. 7: Sample images of seven databases: (a)Uchimura 3D database,

(b) IFD, (c) JFFE, (d) ORL, (e) Extended Yale (Yale2), (f) AR, (g)

FERET.

• Uchimura 3D database: A 3D point cloud data of 640×480

was created along with color images. This dataset consists

of 38 subjects. Each subject has 10 samples, of various head

poses and illumination conditions. From the 3D data, we

first generate a range image as the visual feature image ac-

cording to the method in [11]. For recognition, 5 samples

of each subject are randomly selected as training data while

the rest as test data.

• Indian Face Database (IFD): this database contains 40 sub-

jects. Each subject has 11 samples varied in head poses and

facial expressions. Five samples per subject are randomly

selected as training data and the rest as test data.

• The Japanese Female Facial Expression Database

(JFFE): Ten subjects are contained in the databases. Each

subject has 7 samples according to 7 basic facial expres-

sions. For recognition, 4 samples are randomly selected as

training data while the rest as test data.

• ORL database (previous ATT database): There are 40

subjects in this databases. Each subjects has 10 samples with

variances in facial expressions, open or closed eyes, with

glasses or no glasses, scale changes (up to about 10 percent),

head poses. Five samples per subject are randomly selected

as training data while the left ones as test data.

• Extended Yale database (Yale2 database): more than

20,000 single light source images of 38 subjects with 576

viewing conditions (9 poses in 64 illumination conditions)

are contained in the database. To evaluate the robustness of

our method on the illumination changes, 5 samples of the

64 illumination conditions are randomly selected as training

data, the left 59 images as test data.

• AR database: 4000 color face images of 126 people (70

men and 56 women) are contained in this database. They are

frontal view faces with different facial expressions, illumina-

tion conditions, and occlusions (sun glasses and scarf). Each

subject has 20 samples, which are divided into two sections

taken in different time (separated by two weeks). As in [18],

the fist session images of 50 male subjects and 50 female

subjects was selected as a subset for performance evaluation.

For each subject, we randomly choose 5 samples for training

and the left 9 images for test.

• FERET database: consists of 13539 images correspond-

ing to 1565 subjects. Images differ in facial expressions,

head position, lighting conditions, ethnicity, gender and age.

To evaluate the robustness of our method to facial expres-

sions, we worked with subset of front faces labeled as Fa,

Fb, where Fa with regular facial expressions, and Fb with

alternative facial expressions. There are 1201 subjects in the

dataset. Fa samples of each subject are selected as training

data, while Fb as test data.

The performances of the first three databases (Uchimura 3D, ifd,

and JAFEE) are reported in the published work [3]. However,

these databases are very small and out-of-date. To make the eval-

uation more convinced, we add four more databases (ORL, Yale2,

AR, FERET) in the experiments, which are considered as bench-

mark databases to evaluate face recognition algorithms. Face im-

ages in the ORL, Yale2, and AR databases are aligned to 32 × 32

using the method in [19]. FERET database is normalized using

the CSU Face Identification Evaluation System 5.1 [20]. The face

images are cropped to the same size 32 × 32. Sample images of

all databases are shown in Fig. 7.

2.5 Experimental results

The performance of our method is compared with: (1) the

block based method; (2) the 30 region method [10]. In [10],

since they donot know how to select the best combination of 30

regions, we use the following four combinations: the total 30 re-

gions, 28 regions of highest accuracy, 20 regions of highest ac-

curacy, and the maximum single region (the single region of the

highest performance). The results are shown in Table 1.
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Table 1: Recognition rate of our Quad-tree based method compared to the block and 30-region based method [10] on seven face databases.
❵
❵
❵
❵
❵
❵
❵
❵
❵❵

Method

Database
3D IFD JFFE ORL Yale2 AR FERET

Block 99.9 88.1 95.0 92.7 76.3 83.2 59.6

30-region+

PCA-LDA

30 regions 98.9 87.3 95.0 93.5 91.6 88.6 75.0

28 regions 98.9 86.0 95.0 94.0 91.2 88.6 73.3

20 regions 98.9 87.7 95.0 93.5 91.9 88.6 75.3

max single 99.3 87.7 99.9 94.5 89.9 86.6 67.3

Data-Adaptive Block 99.9 91.4 99.9 96.0 91.9 89.6 70.3

From the experimental results, we find that for the above men-

tioned first 6 databases our method outperforms the conventional

PCA-LDA method and the state-of-the-art 30-region method ob-

viously. Our method benefits from the data-driven image partition

and it can be widely applied to diverse databases, especially for

those with a large number of variations. Moreover, the 0-1 knap-

sack solution guarantees our method to select the best combina-

tion of multiple subregions automatically. We need to acknowl-

edge that our method performs worse than 30-region on FERET

database, which only contains frontal face images and has been

every well registered using the CSU Face Identification Evalua-

tion System 5.1 [20]. We argue that the performance of 30-region

method relies much on human beings and data registration.

3. Hierarchical Feature Learning using Quad-

Tree Structure of Images

In Section 2, we have investigated local feature analysis using

data-adaptive blocks decomposed by Quad-Tree. In this section,

we will explore how to combine local features to form a global

feature representation.

3.1 Problem definition and related works

Early works utilize simple liner combination rules such as

weighted sum rule to combine local features. However, the linear

combination is not sophisticated enough to investigate the global

image structure. New trends of feature learning utilize a multi-

layer framework to learn global feature from local features, where

high-level features can be formulated by the composition of low-

level features.

Recent developed hierarchical feature learning methods utilize

local connectivity based networks such as Convolutional Neu-

ral Networks (CNNs) [21] and Deep Belief Networks (DBNs)

[22], [23]. CNNs utilize local connected feedforward networks to

investigate the spatial correlationship between neuros of adjacent

layers. A typical pipeline of CNNs comprises a convolution pro-

cess and subsampling process. These two processes are alternated

until the size of the final feature representation is as small as what

we desired [24]. DBNs are multi-layer graphical models working

based on greedy layer-wise unsupervised learning of Restricted

Boltzmann Machines (RBMs). RBMs are utilized for parame-

ter initialization of the whole architecture. Although CNNs and

DBNs have achieved many success, they still have some prob-

lems. The first problem relates to the hierarchical architecture,

which are defined based on image pyramid. Image pyramid is a

complete tree structure. We will have the same structure for all

the images when the size of the image pyramid is fixed. Thus,

these methods are not data-adaptive and not flexible enough to

investigate the image hierarchical structure. The second problem

relates to the parameter learning. Existing methods (e.g. DBNs)

utilize a layer-wise unsupervised pre-training for parameter learn-

ing. However, the unsupervised pre-training is not well-suited for

supervised learning applications.

To solve these problems, this section develops an alternative

hierarchical feature learning algorithm using Quad-Tree struc-

ture of images. Quad-Tree explicitly learns the image hierarchi-

cal structure, which can guide in hierarchical feature learning.

The benefits are two-fold: (1) The Quad-Tree structure is a data-

adaptive tree structure and more flexible for hierarchical feature

learning; (2) the parameters (weights) of local subregions can be

defined according to the tree structure other than using unsuper-

vised pre-learning.

3.2 Algorithm architecture

The proposed algorithm comprises a top-down Quad-Tree de-

composition and a bottom-up deep feature integration [4]. An

overview of the hierarchical feature learning algorithm is illus-

trated in Fig.2. Unlike evenly partitioning image, Quad-Tree de-

composes an image into uneven subregions according to the den-

sity of discriminant information across the image region. Low-

level features can be extracted from each subregion and higher-

level features can be formed by low-level features according to

the tree structure.

3.2.1 Top-down image structure prediction

Instead of dividing the face region into uniform blocks, Quad-

Tree partitions the face region into data-adaptive blocks of variant

sizes by means of local discriminative variance. Larger partition

implies that the block has lower density of discriminant features,

and vice versa. To make the Quad-Tree partition more robust to

local noises, we consider to use the variance of all face images

in the entire image dataset. As stated in section 2, we define a

template image T and then perform Quad-Tree decomposition on

T in the same way as stated in Section 2. Since it is rather diffi-

cult to find the best partition using a universal threshold. We also

define a set of thresholds in a descending order as in section 2 and

generate a series of Quad-Trees.

3.2.2 Bottom-up hierarchical feature learning

For each Quad-Tree partition, we first extract low-level fea-

tures from each subregion using PCA+LDA and then higher-level

features can be formulated according to split-and-joint path en-

coded in the tree structure.

Specifically, as Fig.2 shows that a face image is partitioned

into many blocks with varied sizes. Blocks without green rect-
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angle denote the leaf nodes, which are used as the input for lo-

cal feature extraction based on PCA+LDA. Thee select the top ki

vectors as a feature basis, where ki is less than the corresponding

block size, i denotes the level index in the tree hierarchy. The

smaller i is, then bigger ki becomes. Each block is projected into

a feature subspace encoded by PCA+LDA, and the four reduced-

dimensionality neighbor blocks are then joined together back to

their father node in their original split order. For the new joined-

nodes, we apply PCA+LDA again to generate more abstract fea-

tures. And these features will act as new input to create up the

higher layer. This process is repeated until reaching the root node.

Since we apply PCA+LDA on each layer, we name this method

as deep PCA [24]. That is, our hierarchical feature learning is per-

formed based on split-and-joined process according to the Quad-

Tree structure and using a deep PCA as dimension reduction and

feature extraction.

3.2.3 Weight assignment according to Quad-Tree structure

The difficulty in high-level feature formulation is how to de-

fine the dimension of each local subregion. In Algorithm 1, we

assume that each local subregion has the same discriminant power

for classification. Thus, we assign them the same weight and ex-

tract the same dimension of features. However, from experimen-

tal results, we find that the actual discriminant power of each local

subregion is different from each other. Thus, in this algorithm, we

explore to assign different weights to local suregions (including

leaf nodes and non-leaf nodes). The weight corresponds to the di-

mension of the PCA subspace. High weight implies that we need

to extract high dimensional features, and vice versa.

Specifically, we use the number of leaf nodes under each lo-

cal subregion to define its weight. Specifically, the weight of

each node subRk is defined by the number of leaf nodes in the

subtree rooted at subRk against that number rooted by its father

node subR j. An example of the Quad-Tree structure with weight

assignment is shown in Fig. 8. When each group of four neigh-

bour nodes are joined to generate a higher level node (their father

node) subR j, the dimension of the feature subspace of subRk is

defined by the wk ∗ d j, where wk is the weight of subRk and d j is

the dimension of the feature subspace of subR j.

Fig. 8: An example of Quad-Tree partition with weight assignment.

3.3 Experimental evaluation

In order to compare with Algorithm 1, we use the same four

databases in the experiments: ORL [25], Extended Yale (Yale2)

[15], AR [16], and FERET database [17]. Please refer to Section

2.4.1 for the description of each database.

We compared this method with several existing algorithms us-

ing global feature, local features, and canonical deep feature,

respectively. Beyond hierarchical learning, there are also some

other global feature learning algorithms such as the multi-scale

patch-based collaborative representation (MPCRC)[18]. Thus,

the comparison methods are: (1) the conventional PCA+LDA

method; (2) MPCRC [18]; (3) the 30-region method [10], men-

tioned in Section 2; (4) the Data-Adaptive Block based method

developed in Section 2; (5) the Deep PCA [24]. Table 2 illus-

trates the comparison results.

Table 2: Recognition accuracy of our Quad-Tree based hierarchical

learning method compared to other state-of-the-arts.
❵
❵

❵
❵
❵
❵
❵
❵
❵❵

Method

Database
ORL Yale2 AR FERET

PCA+LDA 92.70 76.30 83.22 59.62

MPCRC 91.50 92.11 88.60 73.64

30Regions 93.50 91.64 88.6 75.02

Data-Adaptive Block 96.00 91.86 89.56 70.28

deep PCA 95.50 90.33 89.78 84.44

QT-Hierarchical 97.00 92.94 90.44 85.43

From Table 2, we find that our method outperforms others in

most experiments. To explore how varied deep structures influ-

ence the performance of feature hierarchy, we introduced a set of

thresholds for Quad-Tree partition. Fig. 9 plots the recognition

accuracy of variant Quad-Tree partitions (the indices correspond

to different thresholds in ascending order). Please note that the

leftmost point indicates the accuracy of the original Deep PCA,

which is performed based on a complete tree structure. From this

figure, we can find that hierarchical feature learning with different

Quad-Tree partitions performs quite different. And the best per-

formance usually is achieved at a certain tree index instead of the

first one depending on databases. Our method benefit from the

data-driven Quad-Tree partition, can generate the most appropri-

ate partition adapt to different databases automatically.

0 5 10 15
93

93.5

94

94.5

95

95.5

96

96.5

97
ORL database

Quad−tree index

R
ec

og
ni

tio
n 

A
cc

ur
ac

y

(a) ORL database

0 2 4 6 8 10
65

70

75

80

85

90

95

100

Quad−tree Index

R
ec

og
ni

tio
n 

A
cc

ur
ac

y

Yale2 database

(b) Yale2 database

0 2 4 6 8
80

82

84

86

88

90

92

Quad−Tree Index

R
ec

og
ni

tio
in

 A
cc

ur
ac

y

AR database

(c) AR database

1 2 3 4 5 6 7
84.2

84.4

84.6

84.8

85

85.2

85.4

85.6

85.8
FERET database

Quad−tree index

R
ec

og
ni

tio
n 

A
cc

ur
ac

y

(d) FERET database

Fig. 9: Influence of Quad-Tree partitions to the deep PCA based face

recognition on four databases. (Copyrighted by CRC Press / Balkema

(Taylor & Francis Group) [4])
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3.4 Comparison with data-adaptive block based algorithm

The relationship between Algorithm 1 and Algorithm 2 is that:

Algorithm 1 is about feature learning from the planar image sur-

face while Algorithm 2 is hierarchical feature learning using tree

structure. In Algorithm 1, we treat each block equally and assign

the same weight to them for combination. In Algorithm 2, we

assign different weights to different blocks according to the tree

structure.

We compare the result of these two algorithms in Table

2. We observe that Algorithm 2 outperforms Algorithm 1 for

all databases, especially on FERET database, which is largest

databases containing a large number of classes. These experimen-

tal results demonstrate the strength and effectiveness of utilizing

hierarchical learning to generate global feature representation.

4. Feature Learning from Enlarged Training

Data Encoded by Quad-Tree for Small Sam-

ple Size Problem

In Sections 2–3, we have investigated feature learning with

large training data. In order to evaluate the reliability of our

method, this section investigates feature learning with small train-

ing data, which suffers from the SSS problem. An extreme case

of SSS is single sample per person (SSPP), where only one sam-

ple is available for each subject. Existing visual feature learning

algorithms suffer from overfitting problem under SSS severely.

Even worse, SSPP makes some feature learning methods fail, e.g.

LDA since we can not generate the within-class scatter matrix un-

der SSPP. Thus, it is very necessary to investigate feature learning

with small training data.

4.1 Problem description and related works

There have been many attempts in the literature towards the

SSS problem, such as the virtual sample generation based meth-

ods, multi-subregion combination methods [26]. However, these

methods still have limited generalization ability when the train-

ing samples are insufficient [18]. Recently, a machine-learning

technique known as ensemble learning has been recognized as

an effective way in alleviating the SSS problem. The basic idea

of ensemble learning is that a pool of weak classifiers can have

a better classification ability than a strong classifiers under SSS.

It generates multiple base classifiers, which offer complementary

information for classification. Benefit from base classifier col-

laboration, the overall performance can be higher than a single

classifier.

Existing ensemble learning algorithms for face recognition can

be mainly classified into three groups: (1) global feature selection

based on random subspace; (2) multi-subregion based local fea-

ture extraction; (3) global and local feature integration.

The first kind of methods introduce random subspace for en-

semble, which is based on the literature finding that strong and

stable base classifiers defined by subspace methods (e.g. PCA,

LDA) are not suitable to ensemble rules [28]. The second

kinds of methods utilize local feature extraction based on multi-

subregions[18]. An early attempt [29] partitioned each face im-

age into six elliptical sub-regions. Topcu et al. [30] developed an

Fig. 10: The relationship between diversity and accuracy, which is

summarized into three stages: development, maturity, and decline [5].

(This figure is plotted based on the experimental results shown in Fig.

??)

alternative way by partitioning face regions into small patches of

the same size. Base classifiers can be trained from each patch sep-

arately and the final recognition results were obtained based on

the decision fusion rule of base classifiers. Considering that both

global and local features can provide complementary informa-

tion, the third category of methods integrate both global and local

features together for classification. Well known method include

a hierarchical face recognition algorithm [31], MPCRC [18], the

30region method [10].

Although existing ensemble methods can alleviate the SSS

problem in some sense, they still have limited ability since they

can not generate diverse base classifiers from insufficient training

data. This section develops a training data augmentation method

by generating new samples encoded by Quad-Tree and then per-

forming ensemble from the expanded training data more effec-

tively. The novel idea of this work is illustrated in Fig. 3. The

original small training sample set locates at the center of the face

space in the figure. To explore new possibilities of face space, we

introduce a set of random matrices Ri, i = 1, 2, ..., L, the elements

of which are generated based on uniform distribution. Random

matrices are not added to the original face images directly. In-

stead, we first model the feature distribution of the a small sample

set by a template image fT and then Ri is added to fT to transform

it to a new place f i
T ′

. After that, Quad-Tree decomposition [3]

is performed on each f i
T ′

to generate an image encoding pattern.

Original face images are re-organized according to each Quad-

Tree partition to generate a new training sample set. For each

random matrix, we can have a Quad-Tree partition, and gener-

ate a new training sample set. Given N random matrices, we can

have N Quad-Tree partitions, and N new training sample set ac-

cordingly. Base classifier are learned from each new training set

for ensemble.

Even having diverse base classifiers, we still need to consider

another problem. Ensemble learning algorithms aim to achieve

higher accuracy and higher diversity meanwhile. It is difficult

to achieve these two objectives at the same time. Figure 10 illus-

trates the relationship between accuracy and diversity. We can see

that they are not linearly related. The increase of diversity can im-

prove the accuracy in a certainty degree, but not always so. This

observation is known as the Diversity/Accuracy dilemma [32].

To solve this problem, we introduce an amended 0–1 Knapsack

solution.
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4.2 Algorithm architecture

The developed Quad-Tree based ensemble framework QT-E is

illustrated in Fig. 11, which involves the following three steps:

(1) Base classifier definition after data expansion; (2) Base clas-

sifier selection using an optimal solution; (3) Base classifier inte-

gration through majority voting.

Fig. 11: Illustration of Quad-Tree based ensemble framework (QT-E)

[5].

4.2.1 Quad-Tree based image data expansion

The procedure of base classifier definition is illustrated in Fig.

12, which consists of three operations: (1) template image gener-

ation and random matrix introduction; (2) new sample generation

based on Quad-Tree decomposition, and (3) the definition of ac-

curacy and diversity of base classifiers.

Fig. 12: Example of template face generation and random matrix in-

troduction on ORL database [5].

The generation of the original template image is the same as

that in section 2. Since the template image fT is generated from

the small training data, it is of weak ability to represent the whole

face space. To solve this problem, we introduce a set of random

matrices R = {R1,R2, ...,Ri, ...,RL} and add them to fT to generate

several new template images f i
T ′
= { f 1

T ′
, f 2

T ′
, ..., f i

T ′
, ... f L

T ′
}. Here,

each random matrix Ri, i = 1, 2, ..., L if of the same size as fT and

its elements are randomly generated based on a uniform distribu-

tion in [0, 1]. The new image f i
T ′

is generated by the dot product

of fT and Ri as:

f i
T ′ = fT · Ri. (7)

After obtaining several template images, Quad-Tree decompo-

sition is performed on each f i
T ′

in the same way as stated in Sec-

tions 2. The main difference is on the threshold definition. In

this section, the random matrix is the main variations introduced

to face images, which influence the feature distribution over the

image region. We had better keep tv as an invariant parameter

in order for better investigation the influence of the random ma-

trix to the face region partition. In this dissertation, we define

tv = 0.5 ∗ var(wholeR) without loss of generality, where wholeR

denotes the whole region of f i
T ′

.

Each Quad-Tree partition refers to a face encoding pattern (de-

picted by blocks of variant sizes) as illustrated in Fig. 13 (a).

Given L random matrices, we can have L encoding patterns. For

each Quad-Tree partition, we re-organize the face images in the

original image dataset according to the partition result. The image

re-organization is performed in the same way as that in section

2.2.3. For L Quad-Tree partitions, we can have L new training

sample set. Then, we train a base classifier bi from each new

training sample set using PCA+LDA.

(a)

(b)

Fig. 13: An example of 20 Quad-Trees (a) Quad-Trees (b) Quad-Tree

partitions on a face image. (Copyrighted by IET [27])

4.2.2 Base classifier definition and calculation

Each base classifier has two important parameters: (1) the ac-

curacy (acc(E)); and (2) the diversity (div(E)). The accuracy of

each base classifier bi is defined by the ratio of correctly classified

samples against the total number of samples in Eq. (8).

acc(bi) =
num(correctS amples(bi))

num(totalS amples)
, (8)

The measurement of diversity (div(E)) is investigated in many

literature works. In this section, we use the disagreement mea-

surement to calculate div(E) since it was originally designed for

ensemble problem [33] and its intuition was coincide with ours,

which suggest that two diverse base classifiers should perform

differently on the same training data.

4.2.3 Base classifier selection and ensemble

To solve the diversity/accuracy dilemma, we develop a base

classifier selection algorithm using a tailored 0–1 Knapsack so-

lution. The selection algorithm can be considered as on optimal

combinatorial task. The conventional 0–1 Knapsack problem has

been depicted in Section 2.3.1. This is very similar to our prob-

lem. We have a set of base classifiers. Each base classifier are

with two parameters: (1) recognition accuracy, and (2) the diver-

sity with other base classifiers in making decisions. Our goal is

to find an optimal subset of base classifiers E which can maxi-

mize the final accuracy of E and the total diversity should be still

higher than or equal to a threshold diversity td . Our problem can

be interpreted in a mathematical way as:

max(acc(E)),

sub ject to D(E) ≥ td,
(9)

where td is the diversity threshold and D(E) = div(E) denotes the
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diversity of E.

We define the diversity threshold td as such a diversity, at which

the final recognition accuracy of an ensemble achieves at its high-

est value. Such td has different values at different databases.

In this section, in order to make the definition of td adapts to

databases, we calculate td as the average value of such tds on four

databases in the experiment.

After base classifier selection, we need to integrate the clas-

sification results of selected base classifiers B′ = {b1, b2, ..., bL′ }

together. Here, we use majority voting as the integration scheme.

For each test sample, we assign the class label that receives the

largest vote to it.

4.3 Experimental evaluation

To evaluate the developed system, we also use the four stan-

dard face recognition datasets, namely: ORL [25], Extended Yale

(Yale2) [15], AR [16], and FERET [17], which have been intro-

duced in Section 2.4.1. In this section, we evaluated our method

by comparing with a large number of face recognition algorithms

on both SSS problem and SSPP problem. And then, we tested the

performance of the base classifier selection algorithm. For the

better comparison of our method with existing methods, we con-

duct the SSS problem with different number of training samples

per subject. For the training and test data partition, we randomly

select p samples for each subject as training data and the rest sam-

ples as test data. For each database, we perform 10 splits in this

way. For each split, we use k-fold cross validation (k = 5) for the

evaluation of perform with and without base classifier selection,

respectively. Our method with and without base classifier selec-

tion (denoted by ’Our-Sel.’ and ’Our-Org.’), respectively. The

final recognition accuracy of our method is reported by averaging

over 10 ∗ k trials(10 random splits by k folds-cross validation). In

our method, we use PCA+LDA for feature extraction and use the

nearest neighbor classification with L2-norm for matching. For

each databases, we define the feature dimension of PCA+LDA

subspace as sub jectNumber − 1.

4.3.1 Experimental results

We compared our method with several existing face recogni-

tion algorithms on SSS problem, including: conventional face

recognition algorithms without ensemble and several existing en-

semble methods [10], [18], [26], [34], [35], [36], [37]. The results

on ORL, Yale2, and FERET-1 databases are shown in Tables 3–5,

respectively. In these tables, the fist column are the comparison

methods while the rest columns report the rank-one recognition

accuracy of comparison methods using p samples per subject as

training data.

Comparison with conventional face recognition algorithms

without ensemble The comparison methods without ensemble

include: PCA family [36], LDA family [19], LPP family (Lo-

cality Preserving Projections) [19], CCA family (canonical cor-

relation analysis) [35], and several other representative methods

such as SVM, neural network based methods (MLP (multilayer

perceptron) and RBF (radial basis function network)) [36].

From Tables 3–5, we can see that our method obtains higher

performance in all experiments compared to all conventional

methods without ensemble. This thanks to two main reasons:

Table 3: Evaluation on the ORL database

Method p=2 p=3 p=4 p=5

PCA 66.9 76.6 82.1 86.3

LDA family

LDA 72.5 84.0 89.4 92.8

PCA+LDA 77.7 86.1 90 92.7

R-LDA 79.1 89.0 93.7 96.4

S-LDA 82.9 91.9 95.9 97.7

CCA family

PCA+CCA 81.3 87.5 89.2 91.8

CCA+Perturbation 81.3 87.8 89.5 92.7

KPCA+CCA 81.5 88.8 92.8 93.5

2DCCA 85.0 89.5 93.3 95.0

LPP family

LPP 78.0 86.2 90.3 93.2

R-LPP 79.1 89.1 93.6 96.4

S-LPP 82.9 91.9 95.9 97.7

OLPP 79.5 89.2 93.6 96.2

Ensemble

RS 76.8 83.6 87.8 93.3

PCRC 70.6 81.8 87.9 89.5

MPCRC 78.4 84.3 87.1 91.5

30Region 80.6 87.8 90.7 94.8

Data-Adaptive Block 79.1 87.5 93.3 96.0

Our

Org. 86.3 92.2 95.4 97.5

Sel. 87.1 93.1 96.2 98.1

Table 4: Evaluation on the Yale2 database

Method p=5 p=10

PCA 36.4 53.6

LDA family

LDA 75.5 87.5

PCA+LDA 76.3 87.0

R-LDA 77.2 89.6

CCA family

PCA+CCA 73.0 86.0

CCA+Perturbation 73.0 87.0

KPCA+CCA 75.0 88.0

2DCCA 87.5 91.5

LPP family

LPP 67.9 81.5

Tensor-LPP 71.7 82.9

OLPP 71.6 83.7

Ensemble

RS 84.3 95.8

PCRC 91.0 98.8

MPCRC 92.8 99.1

30Region 90.3 97.8

Data-Adaptive Block 91.9 98.7

Our

Org. 95.0 98.8

Sel. 95.5 98.9

Table 5: Evaluation on the FERET-1 database
Method p=2 p=3 p=4

PCA family

PCA 82.4 86.6 89.4

2DPCA 81.9 86.4 89.2

KPCA 82.3 87.8 91.6

SVM family
SVM 68.8 91.7 95.1

PCA+SVM 91.5 95.8 97.2

Neural Networks
MLP 72.9 83.4 85.9

RBF 85.3 93.2 96.8

Ensemble

RS 75.7 81.5 85.7

LBP-5 × 5 89.4 92.1 94.2

LBP-7 × 7 91.5 94.4 96.0

LBP-7 × 7w 92.9 95.1 96.6

30Region 73.0 92.3 82.1

Data-Adaptive Block 84.3 93.9 94.5

Our

Org. 85.1 96.9 96.4

Sel. 91.9 96.9 98.2

(1) the original training sample set can be enlarged effectively by

generating new samples from QT-E such that the face space can

be represented more accurately by our method; (2) bases clas-

sifiers learned from enlarged training data are more diverse for

collaboration such that the overall discriminative power is much

greater than a single classifier. Our method performs better than

conventional methods in dealing with the SSS problem thanking
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Table 6: Evaluation on the AR and FERET-2 databases for SSPP face recognition
Method AR

FERET Year
B C D E F G H

PCA 97 87 60 77 76 67 38 84.0 1991

(PC)2A 97 87 62 77 74 67 40 84.5 2002

E(PC)2A 97 87 63 77 75 68 41 85.5 2004

2DPCA 97 87 60 76 76 67 37 84.5 2004

(2D)2PCA 98 89 60 71 76 66 41 85.0 2005

SOM 98 88 64 73 77 70 42 91.0 2005

LPP 94 87 36 86 74 78 20 84.0 2005

SVD-LDA 73 75 29 75 56 58 19 85.5 2005

Block PCA 97 87 60 77 76 67 38 84.5 2004

Block LDA 85 79 29 73 59 59 18 86.5 2004

UP 98 88 59 77 74 66 41 90.0 2010

30region 91 94 37 91 66 81 22 86.0 2012

MPCRC 87 95 25 96 80 88 9 79.0 2012

ADA N/A N/A N/A N/A N/A N/A N/A 92.6 2013

DMMA 99 93 69 88 85 79 45 93.0 2013

Our-Sel. 98 96 55 90 83 80 48 94.5 2014

to both new sample generation and ensemble learning.

Comparison with existing ensemble methods: We compared

our method with three kinds of representative ensemble meth-

ods: (1) global feature selection based on random subspace [34];

(2) patch based local feature extraction such as PCRC [18] and

a patch based method using LBP (Local Binary Pattern) [36];

(3) global and local feature integration methods such as the 30

region method [10] which defines 30 regions with large overlaps

based on experimental experience and the multi-scale patch based

method MPCRC [18] which integrates the collaboration of multi-

scale patches to construct the global feature representation. The

performance of LBP methods are reported in [36]. From Tables

3–5, we find that our method outperforms the existing ensemble

methods in almost all experiments thanking to three benefits: (a)

Our method expands the training sample set by generating new

samples. Then, we can generate more diverse and accurate base

classifiers to estimate the face space; (b) In contrast to existing

methods, which divide face regions into separated patches, QT-

E divides face region into blocks of variant sizes according to a

tree-structure, which preserves the geometric correlationship be-

tween local blocks; (c) Other than existing methods, which in-

volve all base classifiers for ensemble, our method develops a

base classifier selection algorithm, which just selects appropriate

base classifiers for ensemble. From Tables 3–5, we can see that

Our-Sel. has better performance than Our-Org. for almost all

splits of databases, which verifies the effectiveness of base clas-

sifier selection.

Comparison with State-of-the-arts on SSPP problem: We

compared our method with 15 state-of-the-arts on SSPP prob-

lem, including PCA, (PC)2A [38], E(PC)2A [39], 2DPCA [40],

(2D)2PCA [41], SOM [42], LPP [43], SVD-LDA [44], Block

PCA [45], Block LDA [46], UP [47], 30region [10], MPCRC

[18], ADA [37], and DMMA [48]. Table 6 shows the rank-one

recognition accuracy of these methods on the AR and FERET-

2 databases. We find that our method outperforms most of the

comparison methods and obtains comparable performances with

the recently developed DMMA algorithm on AR database and

outperforms DMMA with an accuracy gain of 1.0 percent on the

FERET-2 database. The reason why our algorithm is comparable

to these state-of-the-arts thanking to the strategy of new sample

generation which does expand the face space in the training stage.

Benefit from introduction of random matrices, our new generated

samples are quite diverse and different from the original training

data compared with existing virtual sample generation methods.

In addition, our method not only encodes discriminant features

but also geometric information, which is also an important cue

for recognition.

4.4 Comparison with data-adaptive block based algorithm

We compared this algorithm with Algorithm 1, which performs

feature learning with large training data. The main difference be-

tween these two algorithms is that Algorithm 1 utilizes the orig-

inal small data while this algorithm generate base classifiers af-

ter data argumentation. From Tables 3–5, we observe that when

the training data is very small for example (P=2,3 for ORL, p=5

for Yale 2, and p=2 for FERET-1), Algorithm 1 has a very low-

performance. However, along with the increasing of the train-

ing data (e.g. p=5 for ORL, p=10 for Yale 2, and p=3, 4 for

FERET-1) the difference between these two method becomes ob-

scure. This suggest that Algorithm 1 can work well when the

training data is large enough. However, it suffers from perfor-

mance degradation when the training data is small, which verifies

the effectiveness of this method in solving the SSS problem by

generating new samples.

5. Feature Learning in Dynamic Environ-

ments using Helmholtz-Hodge Decomposi-

tion and Quad-Tree

In the last three sections (section 2–4), we have investigated

feature learning on static images (image dataset). In order to fur-

ther evaluate the reliability of our method, in this section, we in-

vestigates feature learning in moving camera videos.

5.1 Problem review and related works

Video based feature learning is a hot research topic in the re-

cent years thanking to the increasing development of mobile de-

vices such as smart watch, smart phone, wearable devices (e.g.

Google glasses, Baidu Eyes), and so on. In the moving camera

videos, camera motion and local object motions are mixed and

dependent with other. Local object motions can offer motion fea-

tures to many video based applications such as action recognition,

tracking, content based surveillance, etc.. Since the camera mo-
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tion and local object motions can influence with each other, if we

use the original mixed motion field for these applications, object

motion based applications will be very challenging and less ac-

curate. Thus, we need to segment object motions from the scene

and recover them to their true values.

As local object motions can be very complicated, it is diffi-

cult to model and segment them directly. An effective approach

is to compensate the camera-induce image motion first. And the

residue motions must belong to moving objects. Dense motion

based methods are important camera motion compensation meth-

ods, which perform pixel-level segmentation on image plane mo-

tion (optical flow). They usually assume the camera-induced im-

age motion by a parametric transformation ranging from transla-

tion to perspective transformation using different parameters [49].

Pixels that are consistent with the estimated model are supposed

to be inlier, while others are supposed to outliers. Since the inlier

estimation is often affected by outliers, several outlier removal

methods were proposed, such as a regression scheme using gra-

dient descent (GD) [49] or least squares (LS) [50], outlier rejec-

tion filter [51], RANSAC [52], joint inlier estimation and mo-

tion segmentation method [53], [54], state-of-art algorithm [55].

In contrast to feature based methods, dense based methods do

not rely on the strong key features tracked throughout the scene.

However, they suffer from two big problems: (1) the parametric

models used for inlier estimation are just approximations of cam-

era motions which only hold for the restricted cases of camera

motion.(2) The image plane motion depends on the distance of

3D points from the camera.

5.2 Algorithm architecture

To solve the above mentioned two problems, in this section,

we develop a dependent motion segmentation algorithm by in-

troducing an amended Helmholtz-Hodge decomposition (HHD)

and a data-driven Quad-Tree partition. HHD is used for camera

motion compensation while Quad-Tree is for object motion seg-

mentation. HHD can interpret the three kinds of camera-induced

image motions by its two components: curl-free component and

divergence-free component. And the Quad-Tree based object

motion segmentation can deal with depth discontinuities in 3D

scenes. The outline of our algorithm is illustrated in Fig. 4.

5.2.1 HHD based camera motion modelling in 3D scenes

Helmholtz-Hodge Decomposition

Helmholtz-Hodge decomposition is one of the fundamental

theorems in fluid dynamics. The principle of HHD [56] is

explained as follows: for an arbitrary image motion field ~ξ, it

decomposes it into two components: a curl-free component ∇E

and a divergence-free component ∇ × ~W:

~ξ = ∇E + ∇ × ~W. (10)

Here, E and W are 3D potential surfaces defined as: 1. Scalar

potential surface, whose gradient is the curl-free component ∇E;

2. Vector potential surface, whose curl operation denotes the

divergence-free component ∇ × ~W [56].

The three kinds of camera induced image motions can be inter-

preted by the two components of HHD in this way:

• Radial motion is irrational, and can be represented by the

curl-free component;

• Rotation is incompressible, and can be represented by the

divergence-free component.

• Translation is irrational and incompressible, and can be rep-

resented by both curl-free and divergence-free components

without any change.

For the implementation, we add two assumptions: (1) the orig-

inal motion field should be piece-wise smooth; (2) HHD is imple-

mented based on global minimization. The implementation is as

follows: since ∇E and ∇× ~W are the projection of the original mo-

tion field ~ξ to the space of the curl-free field and the divergence-

free field, respectively, the distance between ~ξ and two projected

components should be minimal. Therefore, we apply energy min-

imization to calculate the two components.

min(D(E)) = min(
∫

Ω
‖ ∇E − ~ξ ‖2 dΩ),

min(G( ~W)) = min(
∫

Ω
‖ ∇ × ~W − ~ξ ‖2 dΩ).

(11)

where Ω denotes the image domain. Please refer to [57] for im-

plementation details.

Inlier/Outlier representation Inlier is the abbreviation of in-

lier optical flow, which refers to the camera-induced image mo-

tion. Outlier is the abbreviation of outlier optical flow, which

refers to motion discontinuities due to the relative motion be-

tween moving objects and camera, depth discontinuities, and

noises. For the inlier, most part of it is caused by camera mo-

tion, which is smooth and continuous. Here we use ~V
homogeneous

inlier
to

represent this part, where the “homogeneous” refers to the conti-

nuity of the motion field. However, motion discontinuities occur

at the boundaries of scene objects due to depth discontinuities.

Thus, we use ~V
heterogeneous

inlier
to represent this part. In contrast to

inlier, outliers belonging to the motion field of moving objects.

It suffers from motion discontinuities because of the relative mo-

tion between camera and moving objects. Most part of outliers

are heterogeneous and just very small part of them are homoge-

neous. Thus, we use ~V
heterogeneous

outlier
and ~V

heterogeneous

ioutlier
to represent

the heterogeneous and homogeneous part, respectively. Both the

inlier and outlier can be represented by the homogeneous part and

heterogeneous part as below:

~Vinlier = a1
~V

homogeneous

inlier
+ b1
~V

heterogeneous

inlier
, a1 >> b1,

~Voutlier = a2
~V

homogeneous

outlier
+ b2
~V

heterogeneous

outlier
, a2 << b2. (12)

where a1, b1, a2, b2 are quantity coefficients. For the inlier, most

part of it is homogeneous, thus a1 >> b1. It is opposite for the

outliers, thus a2 << b2. The homogeneous part should be rep-

resented by a low-order polynomial function while the hetero-

geneous part should be represented by a high-order polynomial

function.

Camera motion representation by HHD

Based on the above discussion, the optical flow field can be

represented by a low-order polynomial function for ~V
homogeneous

inlier
,

~V
homogeneous

outlier
, and by a high-order polynomial function for

~V
heterogeneous

inlier
, ~V

heterogeneous

outlier
. In our algorithm, the polynomial func-

tion actually corresponds to the potential surface of HHD. As we
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added two assumptions to the implementation of HHD, the poten-

tial surfaces of the amended HHD are piece-wise smooth. They

approximate the basic shape of motion field and thus corresponds

to a low-order polynomial function. Thus, the homogeneous mo-

tion field, which should be represented by a low-order polyno-

mial function can be interpreted by the two components of HHD

as follows:

{~V
Homogeneous

inlier
, ~V

Homogeneous

outlier
} = k1(∇E) + k2(∇ × ~W). (13)

where k1 and k2 are two regularization parameters. They will be

determined in the next section.

The heterogeneous motion, which corresponds to a high-order

polynomial function, cannot be represented by HHD and will be

reserved in a reminder. In the next section, we will construct an

object-motion oriented map (OOM) from this remainder to detect

heterogeneous motions.

5.2.2 Object motion modelling in 3D scenes

To construct the object motion oriented map, we fist need to

represent the homogeneous motion according to Eq. (13). Then

OOM can be calculated by subtracting the homogeneous motion

from the original motion field ~ξ as follows:

OOM = ~ξ − k1(∇E) − k2(∇ × ~W). (14)

The key point is the determination of the two parameters k1

and k2, which should be discussed according to the type of the

camera motion involved in the scene. In this paper, we define two

distance functions in Eq.(15) for this purpose.

k1 =
‖ξ − ∇E‖

‖ξ‖
,

k2 =
‖ξ − ∇ × ~W‖

‖ξ‖
, (15)

where k1 denotes the distance between ~ξ and the curl-free compo-

nent, and k2 denotes the distance between ~ξ and the divergence-

free component.

We use an example 3D scene in Fig. 14 to illustrate the proce-

dure of OOM construction. In the image sequence (a), two people

are walking from left to right, a car is stopping at the left side. A

camera is moving behind the car. From the original optical flow

field in (b) and its color image in (c), we can see that the car shows

larger motion than other pure flat scene area in distance. After

HHD decomposition, the OOM in (f) demonstrates that most part

of homogeneous motion field of static scene objects has been re-

moved from OOM. It only contains heterogeneous motion caused

by depth discontinuities and moving objects.

5.2.3 Quad-Tree based motion segmentation

To detect the heterogeneous motion, we need to label them

from OOM. As depth discontinuities and moving objects vary

at different locations, it is rather difficult to label them based

on global thresholding. To this end, we introduce a data-driven

Quad-Tree scheme, which casts the heterogeneous motion label-

ing to local subregions. If a region is determined as heteroge-

neous according to a criterion function in Eq.(16), it will be di-

vided into four subregions. The criterion function considers the

following two conditions:

(a) (b) (c)

(d) (e) (f)

Fig. 14: An example 3D scene: (a) one frame; (b) the input optical

flow; (c) visualization of the input optical flow by color coding [58]; (d)

curl-free component; (e) divergence-free component; (f) OOM. (Copy-

righted by Springer LNCS [57])

(a) (b)

Fig. 15: Quad-Tree partition on the example 3D scene: (a) OOM; (b)

Quad-Tree partition. (Copyrighted by Springer LNCS [57])

• The variance of pixel values in a region R is higher than or

equal to a threshold variance Tvar;

• The mean pixel value in R is higher than or equal to a thresh-

old mean value Tmean;

Mathematically it can be formulated as:

doS plit(R) = true, while















var(R) ≥ Tvar or,

mean(R) ≥ Tmean.
(16)

We apply the first condition to detect the heterogeneous mo-

tion caused by depth discontinuities (~V
heterogeneous

inlier
), where the

values changes violently in local regions and second condition

to detect the heterogeneous motion caused by moving objects

(~V
heterogeneous

outlier
), where higher than the threshold implies the lo-

cal object motions occupy larger part of the region. Partition

performs till no more regions can be split. Regions of small-

est size smallR are labeled as foreground regions containing het-

erogeneous motions and will be excluded from the inlier esti-

mation in the next procedure. The rest larger regions largeR =

wholeR − smallR represent the homogeneous region and will be

evolved in inlier estimation, where wholeR represents the whole

region of OOM.

5.2.4 Camera motion estimation using surface fitting

After Quad-Tree based heterogeneous motion labeling on

OOM, we will use the rested regions, which correspond to ho-

mogeneous motion field for inlier estimation. We first illustrate

the procedure on scalar potential surface E. The procedure on ~W

is analogous.

As aforementioned, the potential surface of HHD should be

smooth and represented by a low-order polynomial function.

Thus, we formulate the problem of inlier estimation from E as

construction of a new smooth surface E′, which approximates the

smooth basic shape of E. We employ a surface fitting solution

using a low-order polynomial function as follows:

z = ad0 xd + a0dy
d + · · · + ai jx

iy j + · · · + a10 x + a01y + a00,

(17)
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(a) (b)

(c) (d)

Fig. 16: Inlier estimation and outlier recovery on the example 3D

scene: (a) the estimated inlier optical flow; (b) color visualization

of (a); (c) the recovered outlier optical flow; (d) segmentation result.

(Copyrighted by Springer LNCS [57])

In our method, a polynomial of d = 5 is employed so as to pro-

duce a smooth and accurate surface E′. Similarly, we get a new

smooth potential surface ~W ′ which approximate the base of ~W ′.

The inlier of curl-free component is calculated by G1 = ∇E′. The

inlier of divergence-free component is computed by G2 = ∇× ~W
′.

The final inlier optical flow is estimated by linear combination of

G1 and G2 using Eg.(18). Figure 16 (a), (b) shows the estimated

inlier of the example 3D scene. We can see that our method esti-

mates the inlier accurately.

G = k1G1 + k2G2,
(18)

5.2.5 Object motion recovery

After inlier estimation, outliers can be recovered by subtract-

ing the inlier from the original motion field subsequently. Figure

16 shows the recovered outlier motion field in (c) and the final

segmentation map in (d).

5.3 Experimental evaluation

5.3.1 Datasets and experiments design

The system’s performance is evaluated on four benchmark

datasets: Hopkins [59], Berkeley Motion Segmentation [60],

Complex Background [55], and SegTrack [61]. The Hopkins

dataset contains three category video sequences: checkerboard,

car, and people. It provides ground truth segmentation on se-

lected features tracked throughout the sequence. The Berkeley

dataset is derived from the Hopkins dataset, which consists of

26 moving camera videos: car, people, and Marple sequences.

This dataset has full pixel-level annotations on multiple objects

for a few frames sampled throughout the video. We use the other

two datasets: Complex Background and SegTrack, which con-

tain extremely challenging scenes to highlight the strength of our

method. They provide full pixel-level annotations on multiple

objects at each frame within each video.

5.3.2 Experimental results

In this part, we compare our method with six recent developed

dense motion segmentation methods including: (1) joint inlier es-

timation and segmentation (GME-SEG) [53], (2-3) iterative esti-

mation based on least-square (LS) [50], and gradient decent (GD)

[49], (4) outlier rejection filter (Filter) [51], (5) RANSAC [52],

and (6) the latest developed FOF [55], which is considered as

the state-of-art algorithm in motion segmentation. In [55], they

present two versions: (1) FOF, which uses optical flow only, and

(2) FOF+color+prior, which combines optical flow, color appear-

ance and a prior model together. The first five methods were im-

plemented using the source code in [53]. We reported the perfor-

mances of FOF and FOF+color+prior [55] directly.

We used the F-measure [55] to evaluate the performance of

each algorithm, which is an important performance analysis pa-

rameter. Table 7 reports the F-measure of dense based methods on

three benchmark datasets: Berkeley, Complex Background, and

SegTrack. From Table 7, we observe that our method achieves

at the highest performance for almost all videos: it raises the F-

measure by 10% – 30% on Cars 2, 3, 4, 7, and People 1 sequence

in the Berkely dataset; around 10% on the drive, parking, and

store sequences in the Complex Background dataset; and more

than 20% on the parachutte and monkeydog sequences in the

SegTrack dataset. This result is quite appealing even when videos

contain extremely challenging scenes, such as the ones with com-

plex camera motions, complex backgrounds, occlusions, etc..

The good quantitative results are confirmed by the good visual

quality of the segmentation results. Some examples are shown in

Fig. 17, where the last column shows the ground truth segmenta-

tion. In most cases, our segmentation agrees with the true object

regions more than existing methods.

6. Discussion: relationship between four algo-

rithms

We need to explicitly mention that the first three algorithms are

highly related with each other while the fourth algorithm is dif-

ferent from them in some sense. The first three algorithms share

the same research background (face recognition). Their problem

definition and algorithm description are also similar. However,

the research background of the last algorithm is on motion seg-

mentation. It investigates feature extraction from video sequences

rather than image dataset. Thus, the problem definition and algo-

rithm description are also different from the first three algorithms.

However, these four algorithms share the same Quad-Tree based

image encoding, which is the core-aspect of this dissertation.

7. Conclusion

This dissertation develops four Quad-Tree based image en-

coding methods towards four visual feature situations: (1) Fea-

ture learning from data-adaptive blocks decomposed by Quad-

Tree;(2) Hierarchical feature learning using Quad-Tree structure

of images;(3) Feature learning from enlarged training data en-

coded by Quad-Tree for Small Sample Size problem ;(4) Fea-

ture learning in dynamic environments using Helmholtz-Hodge

decomposition and Quad-Tree. They are highly related with each

other and occupy a wide range of feature learning issues. Features

can be extracted from the planar image surface or using hierar-

chical models, with large training data or small data, from static

images or video sequences. The first three algorithms are devel-

oped for feature learning from static images (image dataset) while

the last algorithm is for object motion segmentation in video se-

quences. We use face recognition as research background for

the first three algorithms and motion segmentation for the last
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Fig. 17: Segmentation results of six existing dense based methods and ours on challenging scenarios: (a) input sequences, from top to bottom: cars2,

people2, forest, store, parachute, traffic, segmentation by (b) RANSAC [52], (c) LS [50], (d) GD [49], (e) Filter [51], (f) GME-SEG [53], (g) FOF

[55], (h) FOF+color+prior [55], (i) our segmentation, (j) ground-truth segmentation.

Table 7: F-measure of existing dense based methods and ours.

Sequences GME-SEG LS GD Filter RANSAC FOF FOR+color Our

Cars1 78.33 86.18 18.01 82.87 60.42 47.81 50.84 76.38

Cars2 55.90 65.97 15.70 78.28 34.21 46.37 56.60 83.13

Cars3 65.21 79.43 22.29 74.56 35.80 67.18 73.57 87.37

Cars4 45.69 49.78 22.96 77.22 22.81 38.51 47.96 84.42

Cars5 54.67 61.93 33.08 81.17 25.24 64.85 70.94 84.82

Cars6 33.01 51.23 28.77 57.53 13.40 78.09 84.34 85.71

Cars7 37.89 36.36 36.92 60.47 13.79 37.63 42.92 86.10

Cars8 62.20 81.24 8.57 78.44 37.02 87.13 87.61 90.68

Cars9 72.99 80.99 17.97 68.19 54.69 68.99 66.38 77.42

Cars10 60.01 66.04 14.34 90.95 81.78 53.98 50.84 54.83

People1 34.11 38.32 40.76 71.84 12.06 56.76 69.53 80.03

People2 78.16 84.45 69.30 81.70 37.53 85.35 88.40 89.81

drive 8.14 6.30 41.18 32.40 5.76 30.13 61.80 83.03

forest 15.42 11.01 15.41 19.87 10.67 19.48 31.44 35.71

parking 33.20 21.57 43.84 62.29 17.47 43.47 73.19 83.47

store 14.39 10.94 32.10 29.32 9.68 28.46 70.74 80.10

traffic 14.77 15.80 34.55 15.04 15.49 66.08 71.24 71.67

birdfall2 9.39 3.84 0.99 64.00 3.25 68.68 75.69 76.23

girl 22.51 20.26 15.36 18.21 12.33 75.73 81.95 78.06

parachute 23.01 18.97 12.88 16.30 44.03 51.49 54.36 86.72

cheetah 21.33 14.93 43.59 12.05 9.85 12.68 22.31 55.67

penguin 10.34 18.84 15.34 5.53 18.66 14.74 20.71 21.61

monkeydog 22.29 20.74 16.46 18.93 12.31 10.79 18.62 45.44

algorithm. Experimental results on a large number of benchmark

datasets demonstrate the good performance of our methods.

Apart from face recognition and motion segmentation, our

methods can be widely applied to many other computer vision

applications thanking to the data-adaptive property. For the fu-

ture direction, we are planning to extend our methods to other

image classification and recognition problems, to explore more

effective features and classifiers, to employ our Quad-Tree based

methods in other hierarchical models such as Convolutional Neu-

ral Networks (CNNs), Dynamic Belief Networks (DBNs).
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[9] Alyüz, N., Gökberk, B. and Akarun, L.: Regional registration and cur-
vature descriptors for expression resistant 3D face recognition, SIU,
pp. 544–547 (2009).

[10] Spreeuwers, L.: Fast and accurate 3D face recognition using registra-
tion to an intrinsic coordinate system and fusion of multiple region
classifiers, IJCV, Vol. 93, No. 3, pp. 389–414 (2011).

[11] Zhang, C., Uchimura, K., Koutaki, G. and Zhang, C. M.: 3D face
recognition using multi-level multi-feature fusion, PSIVT (2010).

[12] Jain, V. and Mukherjee, A.: The Indian Face Database, http://vis-
w.cs.umass.edu/ vidit/IndianFaceDatabase/.

[13] Dailey, M. N., Joyce, C., Lyons, M. J., Kamachi, M., Ishi, H. and
Gyoba, J.: Evidence and a computational explanation of cultural dif-
ferences in facial expression recognition, Emotion, Vol. 10, No. 6, pp.
874–893 (2010).

[14] Nefian, A. V. and Hayes, M. H.: Hidden Markov models for face
recognition, Proc. Int. Conf. Acoustics, Speech, Signal Processing, pp.
2721–2724 (1998).

[15] Georghiades, A. S., Belhumeur, P. N. and Kriegman, D. J.: From Few
to Many: Illumination Cone Models for Face Recognition under Vari-
able Lighting and Pose, TPAMI, Vol. 23, No. 6, pp. 643–660 (2001).

[16] Martinez, A. M. and Benavente, R.: The AR face database, CVC Tech-
nical Report (1998).

[17] Phillips, P. J., Moon, H., Rizvi, S. A. and Rauss, P. J.: The FERET
evaluation methodology for face recognition algorithms, TPAMI,
Vol. 22, No. 10, pp. 1090–1104 (2000).

[18] Zhu, P., Zhang, L., Hu, Q. and Shiu, S.: Multi-scale Patch based Col-
laborative Representation for Face Recognition with Margin Distribu-
tion Optimization, ECCV (2012).

[19] Cai, D., He, X., Hu, Y., Han, J. and Huang, T.: Learning a Spatially
Smooth Subspace for Face Recognition, CVPR (2007).

[20] CSU: CSU Face Identification Evaluation System (2003).

[21] LeCun, Y., Bottou, L., Bengio, Y. and Haffner., P.: Gradient-based
learning applied to document recognition, Proceedings of the IEEE,
pp. 2278–2234 (1998).

[22] Hinton, G. E. and Osindero, S.: A fast learning algorithm for deep
belief nets, Neural Computation, Vol. 18, pp. 1527–1554 (2006).

[23] Hinton, G. E., Osindero, S. and Teh, Y. W.: A fast learning algo-
rithm for deep belief nets, Neural Computation, Vol. 18, pp. 1527–
1554 (2006).

[24] Mitchell, B. and Sheppard, J.: Deep structure learning: beyond con-
nectionist approaches, ICMLA’12 (2012).

[25] Samaria, F. S. and Harter, A. C.: Parameterisation of a Stochastic
Model for Human Face Identification, Proceedings of 2nd IEEE Work-
shop on Applications of Computer Vision, pp. 138–142 (1994).

[26] Lu, J., Tan, Y.-P. and Wang, G.: Discriminative Multimanifold Anal-
ysis for Face Recognition from a Single Training Sample per Person,
TPAMI, Vol. 35, No. 1, pp. 39–51 (2013).

[27] Zhang, C., Liang, X. and Matsuyama, T.: Small Sample Size F ace
Recognition using Random Quad-Tree based Ensemble Algorithm,
ICDP (2013).

[28] Skurichina, M. and Duin, R. P. W.: Bagging, boosting and the random
subspace method for linear classifiers, Pattern Analysis and Applica-
tions, Vol. 5, No. 2, pp. 121–135 (2002).

[29] Martinez, A. M. and Kak, A. C.: PCA versus LDA, TPAMI, Vol. 23,
No. 2, pp. 228–233 (2001).

[30] Topcu, B. and Erdogan, H.: Decision Fusion for Patch-Based Face
Recognition, ICPR, pp. 1348–1351 (2010).

[31] Su, Y., Shan, S., Chen, X. and Gao, W.: Hierarchical ensemble of
global and local classifiers for face recognition, IEEE Transactions on
Image Processing, Vol. 18, No. 8, pp. 1885–1896 (2009).

[32] Tang, E. K., Suganthan, P. N. and Yao, X.: An analysis of diversity
measures, Machine Learning, Vol. 65, No. 1, pp. 247–271 (2006).

[33] Arodz, T.: Margin-based Diversity Measures for Ensemble Classifiers,
Advances in Soft Computing Volume, Vol. 30, pp. 71–78 (2005).

[34] Wang, X. and Tang, X.: Random sampling for subspace face recogni-
tion, IJCV, Vol. 70, No. 1, pp. 91–104 (2006).

[35] Sun, N., Ji, Z., Zou, C. and Zhao, L.: Two-dimensional canonical cor-
relation analysis and its application in small sample size face recog-
nition, Neural Computing and Applications, Vol. 19, pp. 377–382
(2010).

[36] Oravec, M., Pavlovicova, J., Mazanec, J., Omelina, L., Feder, M. and
Ban, J.: Efficiency of Recognition Methods for Single Sample per
Person Based Face Recognition, Refinements and New Ideas in Face
Recognition, Dr. Peter Corcoran (Ed.), ISBN: 978-953-307-368-2, In-
Tech, pp. 1885–1896 (2011).

[37] Kan, M., Shan, S., Su, Y., Xu, D. and Chen, X.: Adaptive discriminant
learning for face recognition, Pattern Recognition, Vol. 46, No. 9, pp.
2497–2509 (2013).

[38] Wu, J. and Zhou, Z.-H.: Face recognition with one training image per
person, Pattern Recognition Letters, Vol. 23, No. 14, pp. 1711–1719
(2002).

[39] Chen, S., Zhang, D. and Zhou, Z.-H.: Enhanced (PC)2A for face
recognition with one training image per person, Pattern Recognition
Letters, Vol. 25, No. 10, pp. 1173–1181 (2004).

[40] Yang, J., Zhang, D., Frangi, A. and Yang, J.: Two-dimensional PCA:
A new approach to appearance-based face representation and recogni-
tion, TPAMI, Vol. 26, No. 1, pp. 131–137 (2004).

[41] Di, W., Zhang, L., Zhang, D. and Pan, Q.: Studies on Hyperspectral
Face Recognition in Visible Spectrum With Feature Band Selection,
TPAMI, Vol. 40, No. 6, pp. 1354–1361 (2010).

[42] Tan, X., Chen, S., Zhou, Z.-H. and Zhang, F.: Recognizing partially
occluded, expression variant faces from single training image per per-
son with SOM and soft k-NN ensemble, IEEE Transactions on Neural
Networks, Vol. 16, No. 4, pp. 875–886 (2005).

[43] He, X., Yan, S., Hu, Y., Niyogi, P. and Zhang, H. J.: Face recognition
using Laplacianfaces, TPAMI, Vol. 27, No. 3, pp. 328–340 (2005).

[44] Zhang, D., Chen, S. and Zhou, Z.-H.: A new face recognition method
based on SVD perturbation for single example image per person, Ap-
plied Mathematics and Computation, Vol. 163, No. 2, pp. 895–907
(2005).

[45] Gottumukkal, R. and Asari, V. K.: An improved face recognition tech-
nique based on modular PCA approach, Pattern Recognition Letters,
Vol. 25, No. 4, pp. 429–436 (2004).

[46] Chen, S., Liu, J. and Zhou, Z.-H.: Making FLDA applicable to face
recognition with one sample per person, Pattern Recognition, Vol. 37,
No. 7, pp. 1553–1555 (2004).

[47] Deng, W., Hu, J., Guo, J., Cai, W. and Feng, D.: Robust, accurate
and efficient face recognition from a single training image: A uniform
pursuit approach, Pattern Recognition, Vol. 43, No. 5, pp. 1748–1762
(2010).

[48] Lu, J., Tan, Y.-P. and Wang, G.: Discriminative Multi-Manifold Anal-
ysis for Face Recognition from a Single Training Sample per Person.

[49] Su, Y., Sun, M.-T. and Hsu, V.: Global motion estimation from
coarsely sampled motion vector field and the applications, IEEE
Transactions on Circuits Systtem and Video Technology., Vol. 15,
No. 2, pp. 232–242 (2005).

[50] Smolic, A., Hoeynck, M. and Ohm, J.-R.: Low-complexity global mo-
tion estimation from P-frame motion vectors for MPEG-7 application,
ICIP, pp. 271–274 (2000).

[51] Chen, Y. M. and Bajic, I. V.: Motion vector outlier rejection cascade
for global motion estimation, IEEE Signal Processing Letters, Vol. 17,
No. 2, pp. 197–200 (2010).

[52] Fischler, M. and Bolles, R.: RANSAC random sample consensus: A
paradigm for model fitting with applications to image analysis and au-
tomated cartography, Communications of the ACM, Vol. 26, pp. 381–
395 (1981).

[53] Chen, Y. M. and Bajic, I. V.: A joint approach to global motion estima-
tion and motion segmentation from a coarsely sampled motion vector
field, IEEE Transactions on Circuits Systtem and Video Technology,
Vol. 21, No. 9, pp. 1316–1328 (2011).

[54] Qian, C. and Bajic, I. V.: Global motion estimation under translation-
zoom ambiguity, Proc. IEEE PacRim, pp. 46–51 (2013).

[55] Narayana, M., Hanson, A. and Learned-Miller, E.: Coherent Motion
Segmentation in Moving Camera Videos using Optical Flow Orienta-
tions, ICCV (2013).

[56] Bhatia, H., Norgard, G., Pascucci, V. and Bremer, P.-T.: The
Helmholtz-Hodge Decomposition - A Survey, IEEE Transactions on
Visualization and Computer Graphics (TVCG), Vol. 19, No. 8, pp.
1386–1404 (2013).

[57] Liang, X., Zhang, C. and Matsuyama, T.: Inlier Estimation for Moving
Camera Motion Segmentation, ACCV (2014).

[58] Baker, S., Scharstein, D., Lewis, J. P., Roth, S., Black, M. J. and
Szeliskiv, R.: A Database and Evaluation Methodology for Optical
Flow, Internations Journal of Computer Vision, Vol. 92, pp. 1–31
(2011).

[59] Tron, R. and Vidal, R.: A benchmark for the comparison of 3D motion
segmentation algorithms, CVPR (2007).

[60] Brox, T. and Malik, J.: Object segmentation by long term analysis of
point trajectories, ECCV (2010).

[61] Tsai, D., Flagg, M. and M.Rehg, J.: Motion Coherent Tracking with
Multi-label MRF optimization, BMVC (2010).

c© 2013 Information Processing Society of Japan


