
Multi-subregion Face Recognition using Coarse-to-Fine Quad-tree

Decomposition

Cuicui Zhang, Xuefeng Liang, and Takashi Matsuyama

Graduate School of Informatics, Kyoto University, Japan

zhang@vision.kuee.kyoto-u.ac.jp, {xliang, tm}@i.kyoto-u.ac.jp

Abstract

One problem of existing appearance-based face

recognition methods (e.g. PCA, LDA) is their weak

ability of coping with local variations caused by fa-

cial expressions, motion deformation, data missing, etc.

Multi-subregion fusion methods, which divide the face

into a set of subregions, aim at this issue, and were re-

ported a better performance. However, it leaves two

open questions: 1. what subregions are good partitions

on the face, and 2. How to fuse these subregions could

achieve the expected performance. In this paper, we ad-

dress these two questions and propose a local discrimi-

nation driven face partition method based on a coarse-

to-fine Quad-tree decomposition. Unlike other multi-

subregion approaches relying on prior knowledge, our

method partitions the face according to the data prop-

erty. Thus, it can adapt to varied databases. Mean-

while, our method introduces an optimized solution that

fuses selected subregions to reach higher recognition

accuracy. The cross-database experiments including

one 3D database and three 2D databases demonstrate

the efficiency and effectiveness of the proposed method.

1. Introduction

The appearance-based technique has been exten-

sively studied, and acknowledged as one kind of the

most successful face recognition approaches. In holis-

tic appearance-based methods, an image with size n ×
m pixels is represented by a long vector in the n ×
m dimensional space. Principal Component Analysis

(PCA) [9] and Linear Discriminant Analysis (LDA) [2]

are two widely accepted representatives under this

framework. However, they are not a universal solution

in all cases. For instance, motion deformation, illumina-

tion changing, data missing make modifications on the

representation coefficients on the face, and lead these

methods to have weak ability of coping with local fa-

cial variations. Multi-subregion fusion methods ( [7],

[3], [1]) were proposed as a solution for this problem.

They divide the face into a set of disjoint subregions,

perform recognition on each subregion and fuse the re-

sults. However, if the subregion is small, it may return

low recognition accuracy as less discriminative features

are involved. In [8], the fusion of multiple overlapped

regions was investigated. It defined a set of 30 regions

with large overlaps, see Fig. 4. Experiments showed it

outperformed others on well registered databases. Un-

fortunately, it leaves two open questions to us: First,

what subregions are good partitions on the face? The

30 regions in [8] are manually designed depending on

the prior knowledge based on experimental evaluation,

which is time consuming and requires redesign for dif-

ferent databases; Second, how to select subregions to

build up the best combination is also depending on ex-

tensive experimental evaluations.

We address the above two questions and propose

a new face partition method based on coarse-to-fine

Quad-tree decomposition. Since the decomposition re-

lies on the property of the template of that database,

the obtained subregions can adapt to various databases

without redesign. In our method, the criterion of Quad-

tree decomposition is using LDA-motivated total vari-

ance, which ensures the robustness to local noise and

efficiency of computation. Meanwhile, we introduce

an optimized solution, which borrows the idea for the

0-1 Knapsack problem, to select subregions and fuse

them to achieve expected performance. We evaluate

our method against the method in [8] on four databases:

Uchimura 3D, ATT, IFD, and JFFE database. Experi-

ments show our method has a better ability of handling

local variations, and well adapts to different databases.

The reminder of this paper is organized as follows:

the coarse-to-fine Quad-tree decomposition for facial

region partition is introduced in section 2. Section 3

presents an optimized solution for subregion selection

and fusion. Experimental results are described in sec-

tion 4. And Section 5 concludes the paper.
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2. Coarse-to-fine Quad-tree decomposition

for facial region partition

Instead of dividing the face region into a uniform

grid, Quad-tree partitions the face region by means of

local discriminative variance. In other words, the vari-

ance is discriminative feature density. Larger partition

means the block is with lower feature density. Similarly,

the smaller partition means the block is with higher fea-

ture density. To make the partition more stable to lo-

cal noises, we consider the variance on all faces cross

the entire database. Motivated by the idea of LDA

which encodes discriminative information by maximiz-

ing the between-class scatter matrix Sb and minimizing

the within-class scatter matrix Sw ( See Eq. 1). We de-

fine a template face by Eq. 2 to represent the distribu-

tion of discriminative information for the database (see

Fig. 1). Thus, the total variance of entire database is the

variance of the template (see Eq. 3).























Sb =
c

∑

i=1

Ni(µi − µ)(µi − µ)T ,

Sw =
c

∑

i=1

∑

xk∈Xi

(xk − µi)(xk − µi)
T ,

(1)

template = diag(
Sb

Sw

), (2)

totalV ar = variance(diag(
Sb

Sw

)), (3)

where µ is the mean image of all classes, µi is the mean

image of class Xi, Ni is the number of samples in class

Xi, and xk is the k-th sample of class Xi.

Quad-tree decomposition is performed on the tem-

plate using Eq.4. If the variance of a region R (block) is

higher than a threshold variance (T ∗ totalV ar), then R
is split into smaller blocks (Eq. 4.1). Unfortunately, the

variances may not distribute uniformly. Often, the aver-

age variance of R is low, but the variance of its certain

sub-blocks may be higher than the threshold variance.

In this case, R is split too (Eq. 4.2).

{

doSplit(R) = totalV ar(R) > T ∗ totalV ar, (4.1)

doSplit(R) = doSplit(R)|doSplit(subR). (4.2)

Local variances usually vary on different databases, so

one universal threshold is not applicable in our method.

Even in one database, it is rather difficult to find the

best partition using one threshold. We, therefore, give

a set of thresholds in a descending order, and introduce

coarse-to-fine face partitions. The face image is split

into less and bigger blocks when threshold is large, but

into more and smaller blocks when threshold is small.

(a) (b) (c) (d)

Figure 1: Templates for four databases: (a) Uchimura

3D, (b) ATT, (c) IFD, (d) JFFE database.

T =2.04     T =1.25     T =0.96     T =0.90   T =0.54

T =0.49    T =0.37      T =0.26    T =0.25     T =0.20

T =0.14     T =0.10     T =0.08      T =0.06     T =0.02

Coarse-to-fine

Figure 2: The coarse-to-fine Quad-tree partition of tem-

plate on Uchimura 3D database. The threshold T is in a

descending order from left to right, from top to bottom.

In this work, thresholds are set between a maximum

value when the whole face cannot be partitioned and a

minimum value when the face is partitioned completely.

Figure 2 shows Quad-tree partitions on the template

range image of Uchimura 3D database [10]. As ex-

plained above, larger partitions (blocks) have less dis-

criminative features. There is no need to keep its orig-

inal size. We then resize a block to ((d/2) × (d/2)) if

d is greater than the minimum 3, where d is the width

of the block (in pixel). Finally, coarse-to-fine partitions

and block resizing result in a set of subregions whose

sizes are smaller than original face image.

3. Facial subregion selection using 0-1

Knapsack solution

Subregions, which come from coarse-to-fine parti-

tions, are portions of the face with differences. There-

fore, they perform differently according to the discrim-

inative features involved. Normally, single subregion is

unlikely to achieve the expected performance. On the

contrary, fusion of multiple subregions often works bet-

ter. In our work, we borrow the idea of Dynamic Pro-

gramming solution for 0-1 Knapsack problem, covert

the problem of subregion selection and fusion into an

optimization problem. That is: Given a set of subre-
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gions S = S1, S2, · · · , Sn, each subregion Si has two

parameters: the weight Wi and the value Vi. We aim at

choosing a subset O of S such that the total weight of

selected subregions does not exceed the capacity of O
and the total value is maximized. The weight and the

value of subregion are defined as the size (in pixel) and

discriminative power, respectively. As aforementioned

in Sect.2, the discriminative information of a database

is represented by the matrix of Sb./Sw. Here, the trace

of subregional Si

b
./Si

w
(see Eq. 5 ) is employed as the

discriminative power of the i-th subregion. The capac-

ity of O is defined by the total size of the 30 regions

in Fig. 4, because we want to test if our method could

work better than [8] using the same computational cost.

Vi = trace(
Si

b

Si
w

). (5)

4. Experiments and analysis

Our method was evaluated on four databases: one

3D database (Uchimura 3D database [10]) and three

widely used 2D databases: ATT [6], IFD [5], and

JFFE database [4]. The face data in these databases

are under varied conditions including a variety of

head poses (Uchimura, ATT, IFD), illumination chang-

ing(Uchimura), partial data missing (Uchimura), facial

expressions (ATT, IFD, JFFE), and facial details (e.g.

with glasses or not: ATT). We used the cropped images

as shown in Fig. 3 for recognition. Our method parti-

tioned templates to 17 ∼ 25 subregions depending on

the databases. A template was created on half amount

and randomly chosen images from that database. The

others were used as test data.

Figure 3: The sample images of four databases: (1)

Uchimura 3D, (2) ATT, (3) IFD, (4) JFFE database.

• Uchimura 3D database: 38 face classes, 10 sam-

ples per class, varied head poses and lighting con-

ditions, 3D registration by [10].

• ATT database: 40 face classes, 10 samples per

class, varied lighting conditions, facial expressions

and facial details (glasses / no glasses).

Figure 4: The manually designed 30 regions in [8].

• Indian Face Database (IFD): 40 face classes, 11

samples per class, varied head poses, 4 facial ex-

pressions.

• The Japanese Female Facial Expression Database

(JFFE): 10 classes, 7 samples of 7 facial expres-

sions per class.

Table 1: Recognition rate of our Quad-tree based face

partition method compared to the 30-region method [8]

and the conventional PCA-LDA method.
X
X

X
X
X

X
X
X
X

Method

Database
3D ATT IFD JFFE

PCA-LDA 99.9 93.7 88.1 95.0

30-region+

PCA-LDA

30 regions 98.9 91.9 87.3 95.0

28 regions 98.9 93.7 86.0 95.0

20 regions 98.9 95.0 87.7 95.0

max single 99.3 94.4 87.7 99.9

Quad-tree+PCA-LDA 99.9 96.8 91.4 99.9

The performance of our method is compared with the

30-region method in [8] that is claimed as the best muti-

subregion method currently, and the conventional PCA-

LDA method without facial partition. In [8], since au-

thor did not know how to select the best combination

of 30 regions either, we did experiments and found the

following four combinations outperformed others: the

all 30 regions, the 28 regions of highest performances,

the 20 regions of highest performances, and the maxi-

mum single region (the single region has the best per-

formance). Thus, they were used in comparison. And

in [8], they used max voting for the fusion of multiple

regions. Experiments show the maximum single region

occasionally performs best. In our method, the better

one between the fusion of multiple regions and the max-

imum single performance was employed. Table 1 illus-

trates the result. On Uchimura 3D and IFD database, we

found none of combinations of the 30-region method

could outperform the conventional PCA-LDA. The rea-

son for Uchimura 3D database is that no region in 30-

region method covers the whole facial area. Therefore,

the lack of face boundary, which is an important dis-

criminative clue for recognition, downgrades the per-

formance. Since our method partition the face image
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region from coarse to fine, at least one subregion can

cover the whole face image, no important discrimina-

tive clue is lost. On IFD database, head poses are pretty

diverse such that it is difficult to do facial registration.

Since those 30 regions are designed based on registra-

tion, they are very likely to ignore the discriminative

information on the data without well registration. On

the contrary, our method adapts the shape of partitioned

subregion according to the data property. On the ATT

database, the 30-region method outperforms the con-

ventional PCA-LDA, but it depends on which regions

are chosen. We can see that the accuracy using the 20

regions are higher than that using 28 regions and 30 re-

gions. Observing the recognition rate of each single re-

gion, we find that the rates span a large range. These

selected regions are the top 20, and involve much less

local variations. As our method selects the combina-

tion of subregions using the optimized solution for 0-1

Knapsack problem, it can select the appropriate combi-

nation automatically. For the JFFE database, one single

subregion achieves a better performance than the fusion

of multiple regions and the PCA-LDA. By observing

the shape of that subregion, we find that it removes most

local variations, and happens to be very suitable for the

face data in that database. In our method, the coarse-

to-fine partition also generates a most appropriate sub-

region for the face data. So, this single subregion is em-

ployed other than merely focusing on fusion of multiple

subregions. With comparison on four databases, we can

conclude that the performance of the 30-region method

is not stable because of its limitation of working better

on well registered data and lower ability of adapting the

subregions to diverse face images. In addition, since

authors do not know how to select the best combination

of multiple subregions, it is a serious issue when apply-

ing this method. Compared to the 30-region method,

our method achieves the best performance on all the

databases in Table 1. This shows that our method can

be widely applied to different databases. Because our

Quad-tree based facial partition method is processed on

the template image, which is obtained from Sb and Sw,

and deemed as a summery of the database. Thus, our

method can generate appropriate subregions and adapt

to various databases. Moreover, the dynamic program-

ming solution for 0-1 knapsack problem guarantees our

method to select the best combination of multiple sub-

regions automatically. Since the total size of our subre-

gions equals to those selected regions in [8], this means

we have the same computational cost. Above experi-

ment proofs our method has better ability of handling

local variations and adapting to various face databases.

5. Conclusion

This paper proposes a new face region partition

method based on a coarse-to-fine Quad-tree decomposi-

tion to handle local variations. It answers two questions

remaining in other multi-subregion methods: 1. what

subregions are good partitions? To make the decompo-

sition more robust to local noises, a LDA-motivated to-

tal variance is used to build up a template face for Quad-

tree decomposition. According to the template prop-

erty, coarse-to-fine partition results in a set of different

subregions who have higher discriminative information.

Comparing with existing multi-subregion methods, our

method does not rely on prior knowledge obtained from

experimental evaluation. Therefore, it adapts subre-

gions to databases. 2. how to select and fuse these sub-

regions? We propose an optimization solution to select

the best combination of different subregions. Experi-

mental results on four databases show that our method

achieves at a better performance than the up-to-now best

face partition method using 30 overlapping regions.
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