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Abstract: Multi-camera networks have gained great interest in video-based surveillance
systems for security monitoring, access control, etc. Person re-identification is an essential
and challenging task in multi-camera networks, which aims to determine if a given individual
has already appeared over the camera network. Individual recognition often uses faces as a
trial and requires a large number of samples during the training phrase. This is difficult
to fulfill due to the limitation of the camera hardware system and the unconstrained image
capturing conditions. Conventional face recognition algorithms often encounter the “small
sample size” (SSS) problem arising from the small number of training samples compared
to the high dimensionality of the sample space. To overcome this problem, interest in the
combination of multiple base classifiers has sparked research efforts in ensemble methods.
However, existing ensemble methods still open two questions: (1) how to define diverse
base classifiers from the small data; (2) how to avoid the diversity/accuracy dilemma
occurring during ensemble. To address these problems, this paper proposes a novel generic
learning-based ensemble framework, which augments the small data by generating new
samples based on a generic distribution and introduces a tailored 0–1 knapsack algorithm to
alleviate the diversity/accuracy dilemma. More diverse base classifiers can be generated from
the expanded face space, and more appropriate base classifiers are selected for ensemble.
Extensive experimental results on four benchmarks demonstrate the higher ability of our
system to cope with the SSS problem compared to the state-of-the-art system.
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1. Introduction

Recently, surveillance video cameras have been widely established in both public and private places
with the purpose of security monitoring, access control, etc. Video surveillance systems typically
monitor an environment by a multi-camera network, which comprises a set of vision sensors [1]. Each
camera has its own processing element and memory. Different cameras can communicate through a
network. Person re-identification is a necessary, but challenging task in multi-camera networks, which
aims to determine if a given individual has already appeared over the camera network, and to re-identify
this person at different locations and time instants. Although variant biometric traits, such as gait, can be
used to recognize subjects, it is preferred to use more distinct traits, such as faces. Face recognition has
become a hot research topic in multi-camera network-based applications.

The development of robust and accurate face recognition algorithms in multi-camera networks
is not an easy task, due to several issues, including: (1) hardware system limitation. Considering
the cost and computational complexity, each camera has limited processing elements, while multiple
cameras are often non-overlapping (disjoint). The same subjects observed in multiple camera views
may undergo significant visual appearance changes. Additionally, there are (2) un-constrained
image capturing conditions. In real-world scenes, un-cooperative subjects can be recorded by
different cameras in arbitrary poses, expressions, in different illuminations, viewpoints and with other
environmental changes.

Appearance-based recognition has been acknowledged as one of the most popular approaches for
face recognition, such as eigenfaces, Fisherfaces, Bayes matching and their weighted, kernelized and
tensorized variants [2–4]. However, these methods require a large number of training samples during
the training period. Given sufficient training samples per subject, they can have a very high recognition
accuracy (e.g., 90%). However, in multi-camera networks, it is very difficult to collect adequate training
samples due to the limitation of the hardware system and the complicated image capturing conditions.
The available training samples for each camera are usually very limited. The small number of training
samples compared to the high dimensionality of the face space leads to a serious problem, the “small
sample size” (SSS) problem, which challenges existing recognition algorithms severely. A considerable
amount of efforts have been devoted to solving the SSS problem [5–11]. This problem is interesting to
both theoreticians and practitioners, because the SSS problem can easily contaminate the design and
evaluation of a proposed recognition system. An extreme case of SSS is single sample per person
(SSPP) [12], where only one sample is available for each subject.

1.1. Challenges of SSS Face Recognition

The SSS problem is illustrated in Figure 1, where the red manifold surface reveals a face space
projected by plenty of samples of a person, and the blue one represents the learned face space from a
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small number of samples of him. With insufficient samples, the estimated face space is very likely to
overfit the small training data, and the real face space cannot be well represented. Conventional methods
suffer serious performance degradation from the small training data compared to large appearance
variations caused by occlusions, aging, illumination changes, head poses, facial expressions, etc. [13–15].

Figure 1. The demonstration of two manifold surfaces: The red one represents a full face
space projected from all of the samples of one person; and the blue one is a face space learned
when only three samples are available.

To address the SSS problem, there have been many attempts in the literature such as the random
subspace [5], patch-based methods [16], etc. However, the trained classifiers from small data are likely
to become unstable and have poor generalization ability [9]. Currently, a machine-learning technique,
known as ensemble learning, has received considerable attention and has led to significant improvement
in recognition accuracy. Such algorithms are based on the idea that a pool of different classifiers can
offer complementary information for classification. They first generate multiple base classifiers and then
aggregate them based on an ensemble rule. They benefit from the base classifier collaboration, where
the overall discriminative power is higher than a single classifier.

In the context of ensemble, accuracy and diversity are two important parameters referring to the
performance of an ensemble system. Diversity measures the disagreement degree in the output of a set
of base classifiers [17]. Intuitively, there is not a clear accuracy gain in an ensemble built from a set
of identical base classifiers. The ideal situation is that a set of base classifiers can bear with different
errors, and the final classification error can be minimized by the combination of multiple base classifiers.
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However, existing ensemble methods often suffer from an underlying problem that the species of base
classifiers learned from insufficient training data are not diverse enough to form an adequate feature
space. They are very likely to be tightly correlated and make similar errors. Having less diverse base
classifiers has become a bottleneck of existing ensemble algorithms.

Even having a large number of diverse base classifiers, another problem is worth further discussion.
We cannot guarantee that all generated base classifiers are appropriate for classification. Integrating
inappropriate base classifiers may degrade the performance. The relationship between accuracy and
diversity is illustrated in Figure 2, where the growth of accuracy and diversity can be classified into three
stages: development, maturity and decline. The accuracy grows up with the increase of diversity in the
development stage, halts at the maturity stage and then decreases, while the diversity keeps increasing
in the decline stage. We can see that the increase of diversity can improve the accuracy to a certainty
degree, but they are not always linearly related. This leads to the diversity/accuracy dilemma [17], which
is a challenging problem for existing ensemble learning algorithms. To solve the diversity/accuracy
dilemma, it is highly desirable to improve both the diversity and the accuracy in the development stage
and to suppress the unexpected diversity in the decline stage. Inspired by this finding, this work proposes
a novel generic learning-based ensemble framework (GL-E), which arguments the small training data by
generating new samples to generate diverse base classifiers during the development stage and introduces
a tailored 0–1 knapsack solution [18] to select appropriate base classifiers for ensemble in the decline
stage, so that the final accuracy and diversity are located at the maturity stage.

Figure 2. The relationship between diversity and accuracy, which is summarized in three
stages: development, maturity and decline. This figure is plotted based on the experimental
results shown in Figure 9.

1.2. Contributions

Compared to existing algorithms [5–11], GL-E has the following characteristics:

• GL-E augments the small data by yielding new samples. From the enlarged training data, more
diverse base classifiers can be generated than existing ensemble methods;
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• Conventional ensemble algorithms involve all base classifiers for aggregation, which leads to
a diversity/accuracy dilemma. In contrast, GL-E selects just appropriate base classifiers for
ensemble based on an optimal solution. This strategy achieves the trade-off between the diversity
and accuracy.

The rest of this paper is organized as follows: Section 2 reviews some related works. The motivation
of this work is stated in Section 3. Section 4 describes the proposed method in detail. We evaluate the
system using four widely-used databases in Section 5. Finally, Section 6 concludes this paper.

2. Related Works

While this paper mainly concerns the SSS problem, we provided a literature review on ensemble
learning-based methods for SSS face recognition. They can be mainly divided into three categories:
(1) global feature selection using random subspace; (2) patch (block)-based local feature extraction;
and (3) global and local feature integration.

The first category introduces a random subspace to ensemble. Literature work [19] finds that
strong and stable base classifiers defined by subspace-based algorithms (e.g., Linear Discriminant
Analysis (LDA)) are not suitable for ensemble rules. Thus, a random subspace (RS) [5] was
employed to generate weak, but diverse base classifiers by doing random sampling in the PCA
subspace. As RS focuses on the global-rather than local-based feature extraction, local discriminant
information is not guaranteed. Motivated by this, the second category develops local feature
extraction-based methods by partitioning face images into multiple patches/blocks and extracts
features from each patch/block separately. These are named the patch (block)-based methods [9]. An
early attempt [20] divided face images into six elliptical sub-regions, such as nose, mouth and
eyes [12], and learned a local probabilistic model for recognition. Topcu et al. [16] proposed an
alternative way of partitioning face regions into equally-sized small patches. Features extracted from
each patch were classified separately, and the recognition results were combined by a weighted sum
rule. As small patches usually have limited ability to deal with large variations, considering that global
and local feature representation can provide complementary information, the third category integrates the
global and local features for classification. For instance, Su et al. [21] developed a hierarchical model,
where the global feature vector is extracted from a whole face image using the low frequency Fourier
coefficients, and the local feature vectors are formed based on LDA. The global feature and local features
are combined by a weighted sum rule. Zhu et al. [9] proposed a multi-scale patch-based collaborative
representation (MPCRC) by integrating the complementary information obtained at different scales of
patches. Spreeuwers et al. [8] proposed a 30-region method, which defined 30 regions of variant sizes
according to experimental experience. The largest one covers almost the whole face region.

Beyond SSS face recognition, there have been some special attempts at SSPP face recognition.
For instance, unsupervised learning-based methods apply the classical PCA and its variant extensions,
such as Two-Dimensional PCA (2DPCA) [22], Projection-Combined Princi-pal Component Analysis
((PC)2A) [23] and 2-Directional 2-Dimensional PCA ((2D)2PCA) [24], to generate a holistic-feature
vector from the total gallery data. Virtual sample generation-based methods, e.g., SVD-LDA [25],
generate some virtual samples for each person. Generic learning-based methods, e.g., adaptive generic
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learning (AGL) [26] and adaptive discriminant analysis (ADA) [10], collect an auxiliary generic set
containing multiple samples per person to learn the recognition model to identify the people with a
single sample. Patch (block)-based methods, such as block PCA [27], block LDA [28] and discriminative
multi-manifold analysis (DMMA) [11], are employed to learn base classifiers from local subregions and
integrate them to form a final classifier.

3. Motivation

Ensemble learning can be performed in either the original training data or the enlarged training
data. Generic learning (GL) is an effective approach to augment the small training data. Conventional
GL-based approaches utilize an auxiliary set (named the generic set) containing a large number of
samples to assist in learning the classification model of small data. Intuitively, the faces of all human
beings look alike, which implies that different people may have similar face images. Conventional
GL-based methods try to grab face images from the generic set that are similar to those in the sample set
and treat them as the samples in the small sample set. However, no matter how similar these sample are,
they actually do not belong to the subjects in the small sample set. These methods suffer from a severe
problem that if these subjects, who belong to the generic set other than the small sample set, are present
in the test sample set, they are very likely to be misidentified as the subjects in the small sample set.

To overcome this problem, this paper proposes augmenting the small training data by generating new
samples based on a generic distribution other than grabbing samples from the generic set directly. To
explore the generic distribution of face images, we use the YouTube Faces database (YTF), which
contains the largest number of subjects (1595 different subjects) and has the highest degree of
unconstrained behaviors. Each subject possesses an average of 2.15 videos. Each video ranges from 48
frames to 6070 frames, with an average of 182 frames per video. Faces in each frame were detected by the
Viola-Jones face detector. We randomly selected 100 face images owned by five subjects and projected
them to the 3D space for the ease of presentation. The distribution of face images is shown in Figure 3a.
We can see that all of the face images are uniformly distributed in the manifold face space. Motivated
by this observation, for the given small training data, our algorithm aims to generate new samples based
on a uniform generic distribution.

The main idea is illustrated in Figure 3b. For the given small training data, which is
located at the center of the face space, we introduce several random matrices Ri, i = 1, 2, ..., L

based on a uniform distribution to explore the new possibilities of face space. For each random matrix,
we can generate a new training sample set. Additionally each training sample set can be used to train
a base classifier. Specifically, instead of adding random matrices to the original face images, we first
model the feature distribution of the small data by a template image fT and then add Ri to fT to get
an image f i

T ′ . Then, quad-tree decomposition [18] is performed on each f i
T ′ to get an image encoding

pattern, according to which the original face images are re-organized to generate a new training sample
set. Since all of the new samples are generated using the original face images, they should be located
around the original small sample set. This strategy expands the face space to a large extent.
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Figure 3. The motivation of this paper: (a) Generic distribution of face images in the
manifold face space described by the first three coordinates of locality preserving projections
(LPP) [29]; Two-dimensional face images are mapped into the manifold face space based
on liner embedding; (b) Face space expansion by generating new samples based on
a generic distribution.

(a) (b)

4. The Proposed System

The whole framework is illustrated in Figure 4, which involves the following three steps:

• Generic learning-based base classifier definition: The face space is expanded by generating new
samples based on a uniform distribution. Diverse base classifiers are generated from the expanded
face space subsequently.

• Optimal solution-based base classifier selection: To address the diversity/accuracy dilemma, an
optimal solution motivated by the 0–1 knapsack problem is employed to select appropriate base
classifiers for ensemble.

• Majority voting-based base classifier integration: Multiple base classifiers are integrated based on
majority voting.

We design each step in the following Sections 4.1–4.3, respectively.
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Figure 4. Illustration of the generic learning-based ensemble framework (GL-E).

4.1. Generic Learning-Based Base Classifier Definition

The generic learning-based base classifier definition mainly consists of three operations: (1) template
image generation and random matrix introduction; (2) new sample generation based on quad-tree
decomposition; and (3) the definition of the accuracy and diversity of base classifiers.

4.1.1. Template Image Generation and Random Matrix Introduction

Motivated by the idea of LDA, which encodes discriminant information by maximizing the
between-class scatter matrix Sb and minimizing the within-class scatter matrix Sw (see Equation (1)), we
define a template face fT by Equation (2) to represent the discrimination distribution across a database.

Sb =
c∑

i=1

Ni(µi − µ)(µi − µ)T

Sw =
c∑

i=1

∑
xk∈Xi

(xk − µi)(xk − µi)
T

(1)

fT = diag(
Sb

Sw

) (2)
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where c is the number of classes in the dataset, µ is the mean image of all classes, µi is the mean image
of class Xi, Ni is the number of samples in class Xi and xk is the k-th sample of class Xi. For the face
images of size m× n, the covariance matrix Sb

Sw
is of size (m× n)2. fT is defined by the diagonal vector

of Sb

Sw
, whose entries represent the variances at each pixel of the face region across the database. It is of

the same size as the original face images.
Since the template image fT generated from the small training data has a weak ability to represent the

whole face space, we generate several new images f i
T ′ = {f 1

T ′ , f 2
T ′ , ..., f i

T ′ , ...fL
T ′} by introducing a set of

random matrices R = {R1, R2, ..., Ri, ..., RL} to expand the estimated face space. Each random matrix
Ri, i = 1, 2, ..., L is distinct and has the same size as fT , whose elements are randomly chosen from a
uniform distribution. The new image f i

T ′ is generated by the dot product of fT and Ri as:

f i
T ′ = fT ·Ri (3)

Please note that the generation of fT fails under SSPP, since no samples are available to construct Sw.
Regarding this, fT is defined by just Sb under SSPP. An example of template face generation and random
matrix introduction is shown in Figure 5.

Figure 5. Example of template face generation and random matrix introduction for the
Oivetti face database (ORL).

4.1.2. New Sample Generation Based on Quad-Tree Decomposition

We perform quad-tree decomposition on each f i
T ′ to study the regions of high density of discriminant

features across the face area. The decomposition is performed according to a function doSplit(r) defined
in Equation (4) [18]. If the variance of a region r (starting from the whole region of f i

T ′) is higher
than or equal to a threshold variance (tv), then r is split into four sub-blocks of the same size. The
partition carries on until no blocks satisfying the criterion function or candidate blocks have reached the
smallest size.

doSplit(r) =

{
true, while(var(r) ≥ tv)

false, otherwise
(4)
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The image f i
T ′ is split into less and bigger blocks for a large tv, but into more and smaller blocks for a

small tv. Local variances usually vary on different databases. Even for one database, it is rather difficult
to find the best partition using one universal threshold tv [18]. For this reason, this paper develops a
data-adaptive threshold definition algorithm utilizing the quad-tree structure. The entire procedure is
as follows:

Step 1 Assign an initial estimate for the threshold: tv = 0.5 ∗ var(wholeR), where wholeR denotes the
whole region of f i

T ′;

Step 2 Partition f i
T ′ using tv based on Equation (4). This step produces a hierarchical quad-tree structure

as shown in Figure 6. It contains leaf and non-leaf nodes. For each leaf node subRi, we calculate
its variance: var(subRi);

Step 3 From bottom to top, we calculate the variance of each non-leaf node subRj by the average of its
four children subRk, k = 1, ..., 4 based on a weighted sum rule. The weight of each child node
subRk is defined by the number of leaf nodes in the subtree rooted at subRk against that number
rooted by its father node subRj . An example of the quad-tree structure with weight assignment
is shown in Figure 6. When we reach the top level, we can calculate the value of the root node
var(root) and assign it to the new threshold t′v for the quad-tree partition.

Step 4 Repeat Steps 2 through 3 until the difference between two quad-tree partitions is smaller than
a threshold distance. Specifically, we encode each quad-tree by a 0–1 sequence according to a
full quad-tree partition, where leaf nodes are assigned one and non-leaf nodes are assigned zero.
The distance between two quad-trees is defined by the Hamming distance of two 0–1 sequences.
If this distance is smaller than a threshold distance denoted by ε ∗M , where ε is the tolerance
error and M is the length of the 0–1 sequence, then the iterative process stops. Here, we define
ε = 5% in this paper.

Our algorithm updates the threshold according to the last quad-tree structure in each repeat. The new
threshold is closer to the values of regions containing a high density of discriminant features. Finally,
our algorithm can find the most appropriate threshold for each f i

T ′ automatically.

Figure 6. An example of a quad-tree partition.
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After quad-tree partition, we get a face encoding pattern, as shown in Figure 7a. Each quad-tree
structure refers to such a pattern. Given L random matrices, we can get L such encoding patterns. All
face images in the original training set are re-organized according to each pattern to generate a new
training sample set. The procedure is as follows: since larger blocks (in black) imply that the density
of discriminate information within them is low, these blocks have no need to keep their original sizes.
We do down-sampling on them by resizing them to smaller regions of ((d/2) × (d/2)), where d is the
dimension of the block (in pixels). The smallest blocks (in white) imply that they have a high density
of discriminant features. We will keep their size. Quad-tree decomposition and block resizing generate
new face samples, which are smaller than the original face images. A base classifier bi is learned from
each new training sample set.

Figure 7. An example of 20 quad-trees: (a) quad-trees; (b) quad-tree partitions on a
face image.

(a)

(b)

A interesting observation is that our quad-tree partitions shown in Figure 7 prove an important
literature finding in the biometric field. Recently, researchers have used the area around the eye, the
periocular region (see Figure 8), as a stand-alone biometric with promising results [30]. They found
that the periocular region offers advantages over full face biometrics, such as: (1) it is least affected
by expression variations, aging effects and changes due to the growth of male facial hair; (2) the
performance of full face recognition degrades in the presence of pose variations, whereas the periocular
region-based identification may perform better in the case of extreme pose changes when only one eye
is completely visible; and (3) periocular region-based recognition remains effective even if most of the
lower face region is occluded and as long as only one eye remains visible. Currently, these findings have
only been observed from experimental results. They have not been proven from other perspectives, yet.
Our partition results shown in Figure 7 demonstrate the higher density of the discrimination information
in the periocular region as opposed to other regions and prove theses findings accordingly.
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Figure 8. Example periocular images from two different subjects [30]: (a, b) without
eyebrows; and (c, d) with eyebrows.

4.1.3. The Definition of the Accuracy and Diversity of Base Classifiers

We regard the performance of an ensemble E as a function F , which corresponds to two parameters:
(1) the accuracy (acc(E)); and (2) the diversity (div(E)).

Let a labeled training sample set be S = {(x1, y1), (x2, y2), ..., (xN , yN)}, where yi is the class
label of xi. The base classifiers B = {b1, b2, ..., bL} of an ensemble are trained on this set. For each
sample xi, the output of a base classier bj is bj(xi). The accuracy of each base classifier bj is defined in
Equation (5) by the ratio of its correctly-classified samples against the total samples. Additionally, the
accuracy of the ensemble acc(E) is defined by that ratio based on the majority voting of a set of base
classifiers in Equation (6).

acc(bi) =
num(correctSamples(bi))

num(totalSamples)
(5)

acc(E) = acc(majorityV ote(bi)), i = 1, 2, ..., L (6)

The diversity of ensemble (div(E)) is investigated in several literature works. For instance, in [17], six
common measurements are analyzed, namely disagreement measure, double fault measure, KWvariance,
inter-rater agreement, generalized diversity and measure of difficulty. As concluded in [17], these
measures are motivated by different problems in pattern classifications. None of them is universal for
all applications. In this paper, we utilize the disagreement measurement to calculate div(E), which was
originally proposed in an ensemble framework [31], and the intuition behind its definition coincides with
the expectation of our method (two diverse classifiers perform differently on the same training data).

For a query set containing N test samples, each base classifier bi, 1 ≤ j ≤ L assigns a label to each
sample xi, 1 ≤ i ≤ N . The diversity between each pair of base classifiers bi and bj is defined by the
number of samples for which they have different labels against the total number of samples:

divi,j =
n(a, b)

N
, a 6= b (7)

where a and b denote the labels assigned by bi and bj , respectively; n(a, b), a 6= b represent the number
of samples, on which bi and bj have different labels. Diversity among all base classifiers is calculated by
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averaging over all pairwise diversities in Equation (8), which measures the total disagreement among all
base classifiers.

div(E) =
2

L(L− 1)

L∑
i=1

L∑
j=1

divij (8)

4.2. Optimal Solution for Base Classifier Selection

As mentioned before, not all generated base classifiers are located within the face space, as we
expected. Even the base classifiers in the face space may perform differently according to the
discriminant features involved. That is, some base classifiers are not appropriate for classification.
Integrating inappropriate base classifiers may lead to the diversity/accuracy dilemma, which has been
illustrated by the experimental results in Figure 9.

Figure 9. A demonstration of the diversity/accuracy dilemma on four public face databases:
(a) ORL; (b) Yale2; (c) AR; and (d) FERET.
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To alleviate this problem, an optimal solution motivated by the 0–1 knapsack algorithm is tailored to
select appropriate base classifiers for ensemble. The selection can be considered as a combinatorial
optimization task. Suppose each base classifier has two items: (1) the recognition accuracy; and
(2) the disagreement with other base classifiers in making decisions; which contribute to the diversity
of an ensemble. Given a set of base classifiers, our goal is to find an optimal subset of base classifiers
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E that maximizes the final accuracy, while the diversity of E is still higher than or equal to a threshold
diversity td. The mathematical interpretation of our problem is:

max(acc(E))

subject to D(E) ≥ td
(9)

where D(E) = div(E) denotes the diversity of E and td is the diversity threshold.
Our problem is very similar to the conventional 0–1 knapsack problem, which is defined as: given a

set of items, each item has a mass and a value. We select some items and put them into a knapsack K,
which maximizes the total value of K, and the total weight of K is less than or equal to the capacity of
K. This can be interpreted as:

max(value(K))

subject to mass(K) ≤ tc
(10)

where value(K) and mass(K) denote the total value and total mass of selected items in K, and tc

represents the capacity of K. Comparing optimization (9) and (10), we find that they are very similar to
each other. The value(K) and mass(K) are much like the acc(E) and D(E) in our problem.

Nevertheless, our problem is not equivalent to the 0–1 knapsack problem. One of the main difference
lies in the constraint interpretation, where the knapsack problem requires the total weight to be less than
or equal to a given limit, and our problem requires the diversity of ensemble to be higher than or equal to
Td. So that our problem more naturally converts to the 0–1 knapsack problem, we rewrite the constraint
as: the inverse of the total diversity of E is less than or equal to the inverse of the diversity threshold td.

Another difference is that the traditional 0–1 knapsack problem assumes that different items have
different masses and weights, and hence the optimal solution is unique. However, in our case,
since different base classifiers may have the same accuracy and diversity, multiple subsets of base
classifiers may achieve the optimal solution simultaneously. Under such circumstances, to reduce the
computational complexity of an ensemble, we select the subset with the least number of base classifiers
as the final optimal solution.

Finally, our problem can be formulated as:

max(acc(E))

subject to
1

D(E)
≤ 1

td

min(num(E1), num(E2)), where acc(E1) = acc(E2)

(11)

where num(E) denotes the number of base classifiers involved in E. The diversity threshold td is
defined by such a diversity, which the accuracy of an ensemble achieves at its highest value. As shown in
Figure 9, such td varies on different databases. Actually, the definition of td depends on both the
application requirement and data property. For applications with a high requirement on diversity, we
should assign a relatively high value to td (e.g., 0.9), and vice versa. In this paper, to make td adapt to
different databases, we define td as the mean value of such tds on four databases.
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4.3. Base Classifier Integration

To aggregate the selected base classifiers B′ = {b1, b2, ..., bL′}, we use the majority voting scheme.
The ensemble classifies test samples by taking a majority vote among all base classifiers and assigns the
class label that receives the largest vote to them.

4.4. Algorithm Description and Analysis

The skeleton of the proposed GL-E framework is illustrated in Algorithm 1.

Algorithm: 1 Generic learning-based ensemble framework (GL-E).

Input: Gallery set XG = {xGij; i = 1, 2, ..., N, j = 1, 2, ...,MG}, probe set XP = {xPi ; i = 1, 2, ..., N ∗
MP}, parameter L.

Output: Decision vector of XP: Y P = {yPi ; i = 1, 2, ..., N ∗MP}.
Initialization:

Set yPi = 0; i = 1, 2, ..., N ∗MP .
Step 1: Generic learning-based base classifier definition

Generate a template image fT using Equation (1).
For r = 1, 2, ..., L, repeat

1.1: Add a random matrix Rr to fT to get a new image f r
T ′ defined by Equation (3);

1.2: Perform quad-tree decomposition on f r
T ′ to get an encoding pattern Pr by Equation (4)

and use Pr to generate a new gallery dataset XG
r ;

1.3: Perform PCA + LDA onXG
r to define a base classifier bi, the output decision vector

of br is Yr, the accuracy of br is denoted by acc(br).
end

Step 2: Optimal selection:
Select a subset of base classifiers E using the optimal solution in Equation (11).

Step 3: Majority voting:
Integrate the base classifiers in E using the majority voting.

Output decision vector:
Output the labels of samples in the probe set Y = max(

∑
Yr).

We briefly analyze the computational complexity of GL-E according to its three main processing
stages: generic learning-based base classifier definition, optimal base classifier selection and majority
voting. The first stage mainly involves a template image calculation, quad-tree decomposition and
the performance analysis of base classifiers based on PCA + LDA. Suppose a training set contains m
samples, and the size of each face image is d. Both the generation of fT , f i

T ′ and quad-tree decomposition
can be performed in linear time O(d). The classical PCA requires O(d3 + d2m) computations and LDA
needs O(mnt + t3) [32], where n is the number of features and t = min(m,n). Since the feature
dimension is usually smaller than that of the original face image, we have d > n. For an ensemble
involving L base classifiers, the complexity of the first stage is summarized as O(L(d3 + d2m)). In
the second stage, the tailored optimal 0–1 knapsack problem can be solved by dynamic programming,
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which requires O(LlogL) computations. The majority voting takes O(L) computations. Thus, the total
computational complexity of our system is O(L(d3 + d2m+ LogL+ 1)).

5. System Performance Analysis

We evaluated our system (GL-E) on four widely-used databases, namely: ORL [33], Extended Yale
(Yale2) [34], AR [35] and FERET [36]. First, we analyzed the influences of a key parameter of our
method: the number of base classifiers. Then, we compared our method with a wide range of face
recognition algorithms on SSS and 15 state-of-the-art methods on the SSPP problem. Finally, we
evaluated the performance of optimal base classifier selection, followed by the summary of simulation.
To better compare our method with existing methods, we conduct the SSS face recognition with different
numbers of enrolled samples as the training data. We randomly select p samples per subject from
the database as training data and the rest of the samples as test data. We perform 10 splits for each
database. For each split, we apply k-fold cross-validation (k = 5) to evaluate the performance of our
algorithm with and without base classifier selection, respectively. Specifically, both the training data
and test data are divided into k subsets, as shown in Figure 10. Each subset has the same number of
subjects. The holdout validation is repeated k times. Each time, one of the k subsets is treated as
training data and validation data, which is used to train the base classifier selection. The other k − 1

subsets are treated as training data and test data to report the performance of our method with and
without base classifier selection (denoted by Our-Selection (‘Our-Sel.’) and Our-Original (‘Our-Org.’),
respectively). The final performance of our method is calculated by the average accuracy over 10 ∗ k
trials (10 random splits by k-fold cross-validation). We use PCA + LDA to extract features and
apply the nearest neighbor classification with the L2-norm for matching. The feature dimension of the
PCA + LDA subspace is defined by subjectNumber − 1 for each database.

Figure 10. k-fold cross-validation for system performance evaluation.
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5.1. Databases

• ORL database: This contains images from 40 subjects, with 10 different images per subject.
Images vary on head poses, facial expressions, open or closed eyes, smiling or non-smiling, with
glasses or no glasses and scale changes (up to about 10 percent).

• Extended Yale (Yale2) database: There are more than 20,000 single light source images of
38 subjects with 576 viewing conditions (nine poses in 64 illumination conditions). To evaluate
the robustness of our method to the illumination changes, we use the 64 near frontal images under
different illuminations per individual in the experiments.

• AR database: This contains over 4000 color face images of 126 people (70 men and 56
women), including frontal views of faces with different facial expressions, lighting conditions and
occlusions (sunglasses and scarves). Each subject has 26 samples, taken in two sessions (separated
by two weeks), and each session contains 13 samples. Similar to [11], eight subsets (A to H) of 800
images (eight images per subject) from 100 different subjects (50 men and 50 women) were used
in our experiments. They were taken from two separate sessions and with different expressions.
Figure 11c shows sample images from Subsets A to H, where A is used for training and the
remaining seven subsets for testing.

• FERET database: This contains 13,539 facial images corresponding to 1565 subjects. Images
differ in facial expression, ethnicity, gender and age. We worked with the grayscale images
from GrayFERET (FERET Database, 2001). Two subsets (FERET-1 and FERET-2) are used to
evaluate the performance of our method on SSS and SSPP face recognition, respectively. Similar
to [7], FERET-1 contains all available subjects that have more than four frontal images. There are
665 images from 82 subjects in total. Similar to [11], FERET-2 is a subset containing 400 frontal
face images belonging to 200 different people (71 females and 129 males). Each subject has two
images (Fa and Fb) varying in race, gender, age, expression, illumination, scale, etc.

Figure 11. Four databases used in the experiments: (a) ORL; (b) Extended Yale (Yale2);
(c) AR; (d) FERET.

(a) (b)

(c) (d)

Face images in the first three databases are aligned to 32× 32 using the method in [32]. The FERET
database is normalized using the CSUFace Identification Evaluation System 5.1 [37]. The face images



Sensors 2014, 14 23526

are cropped to the same size: 32 × 32. Sample images of all databases after histogram equalization are
shown in Figure 11.

5.2. Parameter Analysis

We investigate a key parameter of our method: the number of base classifiers L. We pick up two
representative databases for analysis: a relatively large database, Yale2 with p = 5, and a small database,
ORL with p = 2. The recognition accuracy of our method for these two databases, where L ranges from
20 to 50, is demonstrated in Figure 12a,b, respectively. We observe that GL-E has a stable recognition
accuracy versus a large range of base classifiers for both databases. In order to save computational cost,
L is set to a relatively small value, 20, without losing performance.

Figure 12. Influence of a key parameter (base classifier number) of our method on two
databases: (a) ORL; (b) Yale2.
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5.3. Comparison with Existing Methods on SSS Face Recognition

In this part, we compared our method with a wide range of algorithms on SSS face recognition,
including: conventional algorithms without ensemble and existing ensemble methods [5–11].
Tables 1–3 tabulate the rank-one recognition accuracy of comparison methods on ORL, Yale2 and
FERET-1 databases. In Tables 1–3, the fist column lists the comparison methods, and the rest of the
columns report the recognition accuracy of these methods using p samples per person as the training
data. ROC curves of our method on four databases are shown in Figure 13.
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Table 1. Evaluation of the ORL database. MPCRC, multi-scale patch-based collaborative
representation. LLP, locality preserving projections; CCA, canonical correlation analysis.

Method p = 2 p = 3 p = 4 p = 5

PCA 66.9 76.6 82.1 86.3

LDA family

LDA 72.5 84.0 89.4 92.8
PCA + LDA 77.7 86.1 90 92.7

R-LDA 79.1 89.0 93.7 96.4
S-LDA 82.9 91.9 95.9 97.7

CCA family

PCA + CCA 81.3 87.5 89.2 91.8
CCA + Perturbation 81.3 87.8 89.5 92.7

KPCA+ CCA 81.5 88.8 92.8 93.5
2DCCA 85.0 89.5 93.3 95.0

LPP family

LPP 78.0 86.2 90.3 93.2
R-LPP 79.1 89.1 93.6 96.4
S-LPP 82.9 91.9 95.9 97.7
OLPP 79.5 89.2 93.6 96.2

Ensemble

RS 76.8 83.6 87.8 93.3
PCRC 70.6 81.8 87.9 89.5

MPCRC 78.4 84.3 87.1 91.5
30Region 80.6 87.8 90.7 94.8

Our
Org. 86.3 92.2 95.4 97.5
Sel. 87.1 93.1 96.2 98.1

Table 2. Evaluation of the Yale2 database.

Method p = 5 p = 10

PCA 36.4 53.6

LDA family
LDA 75.5 87.5

PCA + LDA 76.3 87.0
R-LDA 77.2 89.6

CCA family

PCA + CCA 73.0 86.0
CCA + Perturbation 73.0 87.0

KPCA + CCA 75.0 88.0
2DCCA 87.5 91.5

LPP family
LPP 67.9 81.5

Tensor-LPP 71.7 82.9
OLPP 71.6 83.7

Ensemble

RS 84.3 95.8
PCRC 91.0 98.8

MPCRC 92.8 99.1
30Region 90.3 97.8

Our
Org. 95.0 98.8
Sel. 95.5 98.9
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Table 3. Evaluation of the FERET-1 database. RPF, radial basis function; LBP, local binary pattern.

Method p = 2 p = 3 p = 4

PCA family
PCA 82.4 86.6 89.4

2DPCA 81.9 86.4 89.2
KPCA 82.3 87.8 91.6

SVM family
SVM 68.8 91.7 95.1

PCA + SVM 91.5 95.8 97.2

Neural Networks
MLP 72.9 83.4 85.9
RBF 85.3 93.2 96.8

Ensemble

RS 75.7 81.5 85.7
LBP-5× 5 89.4 92.1 94.2
LBP-7× 7 91.5 94.4 96.0

LBP-7× 7w 92.9 95.1 96.6
30 Region 73.0 92.3 82.1

Our
Org. 85.1 96.9 96.4
Sel. 91.9 96.9 98.2

Figure 13. ROC curves of our method on four databases: (a) ORL (p = 2); (b) Yale2
(p = 5); (c) AR (subset B); (d) FERET-1.
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5.3.1. Comparison with Conventional Face Recognition Algorithms without Ensemble

We have compared our method with several conventional face recognition algorithms without ensemble,
including: PCA family [7], LDA family [32], LPP family (locality preserving projections) [32], CCA
family (canonical correlation analysis) [6] and several other representative methods, such as SVM, neural
network-based methods (MLP (multilayer perception) and RBF (radial basis function network)) [7]. For
a fair comparison, we reported the performances of these methods presented in their published papers.
As these methods were not implemented on all of the databases in the reference papers, we compare
with different methods on variant databases.

We got the following observations from Tables 1–3:
(1) Performance degrades for the SSS problem: For all databases, we find that conventional methods

obtain relatively high performance when the gallery data have moderate or a large number of training
samples. However, their performances degrade as p decreases. This implies that the SSS problem
challenges existing face recognition algorithms.

(2) Supervised learning outperforms unsupervised learning: Compared with PCA-based unsupervised
learning methods, LDA-based supervised learning methods have relatively higher performance on almost
all experiments, which shows the superiority of employing supervised learning in dealing with the
SSS problem.

(3) Global and local feature-based methods have both advantages and disadvantages: For the ORL
database, which contains multiple variations caused by head poses, facial expressions, open/closed
eyes, head scale changes, with/without glasses, etc., the local feature-based method (the classical LPP)
outperforms the global feature-based method (the classical LDA). However, this is opposite for the Yale2
database, which contains illumination variations. This implies that both global- and local feature-based
methods have their own advantages and disadvantages. Feature representation is not the key point in
solving the SSS problem.

(4) Increasing diverse samples is more important: An interesting observation is captured between
2DCCA(in Tables 1 and 2) and 2DPCA (in Table 3). 2DCCA is an upgraded CCA algorithm targeting
the SSS problem by directly extracting features from the image matrix rather than from the matrix to
vector transformations. It consistently outperforms other variants of CCA in Tables 1 and 2. Similarly,
2DPCA applies this strategy, but it fails at performance improvement (see Table 3). This implies the
2D-matrix-based feature representation is not always effective for the SSS problem. The key point is to
expand the face space by generating more samples rather than changing its representation.

(5) Our method performs better: Compared with all conventional methods without ensemble,
our method, GL-E, obtains better performance on all experiments. There are two main reasons:
(1) by generating new samples from GL-E, the original training data have been enlarged effectively,
such that the face space can be represented by our method more accurately; (2) the generated base
classifiers learned from the enlarged training data are diverse, offering complementary information
for classification, and hence, the overall discriminative power is much greater than a single classifier.
Benefiting from both new sample generation and ensemble learning, our method shows a better ability
to address the SSS problem over conventional face recognition methods.
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5.3.2. Comparison with Existing Ensemble Methods

Ensemble methods have been widely applied to deal with SSS face recognition. We have compared
our method with three kinds of representative methods: (1) global feature selection based on a random
subspace [5]; (2) patch (block)-based local feature extraction, such as PCRC [9], and a patch-based
method using LBP (local binary pattern) [7], which partition face images into small patches of
the same size; and (3) global and local feature integration-based methods, such as the 30 region
method [8], which defines 30 regions with large overlaps according to experimental experience, and
the multi-scale patch-based method, MPCRC [9], which integrates the collaboration of patches of
multi-scales to generate global feature representation. We reported the performance of LBP-based
methods in [7]. We implemented the 30 region method and used the source code of PCRC and MPCRC
in [9]. As this source code [9] requires all subjects to have the same number of training samples and test
samples, only ORL and Yale2 met this requirement.

We got the following observations from Tables 1–3:
(1) Ensemble learning can improve the performance: In Table 2, we observe that the ensemble-based

methods outperform conventional algorithms without ensemble. This demonstrates the effectiveness
of ensemble. However, existing ensemble methods are not always effective at coping with the SSS
problem. For example, in Table 1, higher performances are achieved by the CCA and LPP families rather
than existing ensemble algorithms. This shows the limited ability of existing methods when dealing
with SSS.

(2) Local feature-based ensemble outperforms global feature-based ensemble: Compared with RS,
the local patch-based method PCRC outperforms all conventional face recognition methods without
ensemble of the Yale2 database (see Table 2) and has comparable results with S-LDA and S-LPP for the
ORL database (see Table 1), which obtains the highest accuracy among conventional methods without
ensemble. This shows the superiority of local feature extraction over global feature selection when
dealing with local variations. However, the performance of patch-based methods is sensitive to the
design of the patch size. An inappropriate patch size may lead to performance degradation, which has
been illustrated in Table 3. Among the three variants of LBP, the one with a patch size of 7×7w performs
better than the other methods at p = 2. However, this is not true for the other two versions (LPP 5 × 5

and LPP 7× 7).
(3) Global and local feature integration improves performance further: To overcome the problem

of patch-based methods, the global and local feature integration-based methods were proposed. We
find that the 30 region method outperforms RS and PCRC in Table 2, and MPCRC obtains the highest
performance among all existing methods in Tables 1 and 2. This implies the effectiveness of integrating
local patches of variant sizes together to generate the global feature representation. However, we observe
that the 30 region method performs worse than some of conventional methods for the ORL and FERET
databases. The main reason is that the 30 regions are manually designed according to experimental
experience after face registration. For well-registered databases, such as Yale2, which contains only near
frontal images, the 30 region method performs well. However, for not well-registered databases, such as
ORL and FERET, which contain variations of head poses, ethnicity, gender and age, its performance
reduces obviously. We also find that MPCRC performs not so satisfactorily for the ORL database
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(see Table 1), which contains more variations. There are two main reasons: (1) it is developed on
the small gallery data, while the probing set contains much more variations. Although the patch-based
representation can deal with some local appearance variations, it is unable to reconstruct the expected
face space with large variations caused by head poses etc.; (2) the multi-scale scheme of MPCRC just
integrates the complementary information obtained at different scales of patches without considering the
geometric co-relationship between local patches. According to the finding in [11], there is high overlap
between manifolds of local patches. This suggests that the geometric information between local patches
is also important for recognition.

(4) Our method performs better than existing ensemble methods: Compared with existing ensemble
methods, our method obtains better performance in almost all experiments. It offers advantages over
existing methods thanks to three main benefits: (1) Unlike existing methods, which train base classifiers
from small training data, our method generates new samples to enlarge the given data. Base classifiers
generated from the enlarged training data are more diverse and accurate for estimating the face space;
(2) Other than existing methods, which divide face regions into separated patches, GL-E partitions
face images into blocks of variant sizes according to a tree structure, which preserves the geometric
correlationship between local blocks; (3) In contrast to existing methods, which involve all generated
base classifiers for ensemble, our method formulates the ensemble as an optimal base classifier selection,
which just selects appropriate base classifiers for integration. Our algorithm achieves a trade-off between
diversity and accuracy. From Tables 1–3, we can observe that Our-Sel. outperforms Our-Org. for
almost all splits of databases, which demonstrates the effectiveness of base classifier selection.

5.4. Comparison with State-of-the-Art Methods for SSPP Face Recognition

We have compared our method with 15 state-of-the-art methods for SSPP face recognition, including
PCA, (PC)2A [23], Enhanced (PC)2A (E(PC)2A) [38], 2DPCA [22], (2D)2PCA [24], Self-Organizing
Map (SOM) [39], LPP [40], SVD-LDA [25], block PCA [27], block LDA [28], Uniform Pursuit
(UP) [41], 30 region [8], MPCRC [9], ADA [10] and DMMA [12]. The methods, except 30 region [8],
MPCRC [9] and ADA [10], were implemented by the authors of DMMA [12]. ADA utilized two
additionally databases as a generic set: (1) Extended Multi Modal Verification for Teleservices and
Security applications (XM2VTS); and (2) CAS-PEAL, which is developed in the Joint Research &
Development Lab of Chinese Academy of Sciences (CAS) and the images of which are with different
sources of variations, especially Pose, Expression, Accessories, and Lighting (PEAL). Since XM2VTS
is not a public database, we cannot do experiments on it. Thus, we just reported its performance on the
FERET-2 database presented in [10] for comparison. Table 4 tabulates the rank-one recognition rate of
these methods for the AR and FERET-2 databases. We made the following five observations.

(1) Block-wise supervised learning does not always outperform the block-wise unsupervised learning:
For the AR database, we find that the block-LDA does not perform better than block-PCA. This is
because block-wise approaches assume that features are distributed in blocks evenly. Block-LDA
partitions face images into multiple blocks and treats each block as an independent sample to estimate
the within-class scatter matrix. However, the literature work [11] finds that there is high overlap between
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manifolds of local blocks. Summarizing separated blocks without considering any associations between
them is not reliable to estimate the within-class matrix of LDA.

(2) The key point of virtual sample generation is to generate diverse samples: The virtual sample
generation-based method, SVD-LDA, obtains the worst performance for the AR database. The reason
is that by discarding just some smaller singular values of the original image, the virtually generated
new samples are highly related to the original sample. Hence, the within-class scatter matrix cannot be
accurately estimated under such cases. We draw the conclusion that generating new diverse samples,
which have less co-relationship with the original samples, is the key point of applying virtual sample
generation to take advantage of supervised learning.

(3) Generic learning needs further investigation: Compared with the generic learning-based method,
ADA, we can see that both DMMA and GL-E achieve better performance than ADA. This further proves
that generic learning needs to generate news samples other than grabbing samples from the generic
set directly.

(4) Global and local feature-based ensemble reduces performances under SSPP: The performance
of MPCRC and the 30 region method is not stable under SSPP. MPCRC degenerates to the original
patch-based method, PCRC, without any collaboration of multiple patches of variant scales. As
mentioned before, the performance of local patch-based methods is very sensitive to the design of patch
size, especially when the database contains many local deformations. That is why it performs well on
Subset E of the AR database, which contains just nearfrontal faces without any expressions, but degrades
dramatically to 79% for the FERET-2 database, which contains a large number of local deformations
caused by facial expressions etc. As explained before, the 30 region method reduces the performance
for not well-registered databases. Thus, it performs well for part of AR database, which contains only
frontal images, but not for the FERET-2 database.

(5) Our method shows advantages for SSPP: Among all of the comparison algorithms, GL-E
outperforms most of the methods, and it obtains comparable performances with the recently developed
DMMA algorithm for the AR database and outperforms DMMA with a gain in accuracy of 1.0 percent
for the FERET-2 database. The reason why our algorithm is comparable to these state-of-the-art methods
is that GL-E does expand the face space in the training stage by generating new samples. Compared with
existing virtual sample generation methods, the new generated samples are quite diverse and different
from the original training data, thanks to the introduction of random matrices. Moreover, our method not
only encodes discriminant features, but also geometric information, which contribute to recognition. We
acknowledge that DMMA outperforms our method on some subsets of the AR database. This is mainly
because it extracts features in a person-specific manner rather than in a generic way. By modeling
the manifold surface for each subject and performing classification through maximizing the manifold
margin between different subjects, it employs personal characteristics (e.g., age, hair style, etc.) during
recognition and improves the recognition accuracy. However, we argue that the effectiveness of this
strategy is challenged by the number of subjects involved. With the increase of the number of subjects
in the database, the maximization of the manifold margins between different subjects becomes more
difficult. This then causes errors. That is why DMMA has a reduced performance for the FERET-2
database, which contains twice the subjects of the AR database.
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Table 4. Evaluation of the AR and FERET-2 databases for single sample per person
(SSPP) face recognition. DMMA, discriminative multi-manifold analysis; ADA, adaptive
discriminant analysis.

Method
AR

FERET Year
B C D E F G H

PCA 97 87 60 77 76 67 38 84.0 1991
(PC)2A 97 87 62 77 74 67 40 84.5 2002

E(PC)2A 97 87 63 77 75 68 41 85.5 2004
2DPCA 97 87 60 76 76 67 37 84.5 2004

(2D)2PCA 98 89 60 71 76 66 41 85.0 2005

SOM 98 88 64 73 77 70 42 91.0 2005
LPP 94 87 36 86 74 78 20 84.0 2005

SVD-LDA 73 75 29 75 56 58 19 85.5 2005
Block PCA 97 87 60 77 76 67 38 84.5 2004
Block LDA 85 79 29 73 59 59 18 86.5 2004

UP 98 88 59 77 74 66 41 90.0 2010
30 region 91 94 37 91 66 81 22 86.0 2012
MPCRC 87 95 25 96 80 88 9 79.0 2012

ADA N/A N/A N/A N/A N/A N/A N/A 92.6 2013
DMMA 99 93 69 88 85 79 45 93.0 2013

Our-Sel. 98 96 55 90 83 80 48 94.0 2014

5.5. Evaluation of the Optimal Base Classifier Selection

In order to better demonstrate the effectiveness of base classifier selection, the kappa-error
diagram [42] is used for illustration, which visualizes the pairwise diversity of base classifiers against
their averaged error. In Figure 14, the x-axis is the diversity div between pairs of base classifiers and
the y-axis is the averaged individual error Err of pairwise classifiers. The less the Err is, the higher
the accuracy becomes. The most desirable pairs of classifiers lie in the bottom right side, where the
diversity div is high and the Err is low. For a better demonstration, we use different colors and marks
to differentiate base classifiers. The red points represent discarded base classifiers, and the blue stars
denote selected base classifiers. From the kappa-error diagrams in Figure 14, we can see that the number
of base classifiers and the average errors are reduced obviously after selection. As expected, selected
base classifiers are mainly located at the right bottom side in the figure. This verifies the effectiveness of
the optimal selection in alleviating the diversity/accuracy dilemma.

5.6. Summary of Simulation

In this section, we have studied the influence of a key parameter, evaluated the performance of our
system on both SSS and SSPP face recognition by comparing with a wide range of existing algorithms
and analyzed the effectiveness of base classifier selection. From the experimental results, we find that
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our method performs well on a large range of base classifiers. Compared with conventional algorithms
on SSS face recognition, we observe that ensemble learning improves the recognition accuracy, thanks
to the base classifier collaboration. Benefiting from both new sample generation and ensemble learning,
our method outperforms existing ensemble methods, whether with or without ensemble. Moreover, our
base classifiers encode not only discriminant features, but also the geometric correlationship between
subregions. For SSPP face recognition, our method performs better than almost all 15 state-of-the-art
methods, and it obtains comparable performances with the latest developed DMMA algorithm, which
demonstrates the superiority of our system in dealing with both SSS and SSPP problems. Through
evaluation of the optimal base classifier selection using kappa-error diagrams, we find that the number
of base classifiers and the average errors are reduced obviously after selection. Our system effectively
alleviates the diversity/accuracy dilemma.

Figure 14. Kappa-error diagrams of four databases (red points denote the discarded base
classifiers, blue stars represent the selected base classifiers): (a) ORL (p = 2); (b) Yale2
(p = 5); (c) AR (Subset B); (d) FERET-1 (p = 2).
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6. Conclusions

In multi-camera networks, person re-identification is an essential and challenging task. It often uses
faces as a distinct trial and suffers from the small sample size (SSS) problem arising from the small
number of training samples compared to the high dimensionality of the sample space. In this paper,
we propose a novel generic learning-based ensemble framework (GL-E) to address this problem. GL-E
overcomes the two serious problems of existing ensemble methods for SSS face recognition: (1) base
classifiers are not diverse enough using small training data; and (2) the diversity/accuracy dilemma
occurs during ensemble. We solve the first problem by generating more diverse base classifiers from the
enlarged training data using generic learning. Additionally, the second problem is settled by applying an
optimal base classifier selection, which selects a subset of appropriate base classifiers for aggregation.
Use of this solution achieves the trade-off between the diversity and the accuracy of an ensemble.
Extensive experimental results on four widely-used databases demonstrate that GL-E estimates a more
accurate and robust ensemble for both SSS and SSPP face recognition.

Though promising results have been achieved, the proposed system still has space to extend. For
instance, we adopt random matrices in generating base classifiers; random matrices may introduce
some noises, which influence the quad-tree decomposition. How to remove such noises needs further
investigation. Moreover, diversity is an important factor to evaluate an ensemble system. We simply
use a common definition, the “disagreement degree”, in this paper. There should be better schemes to
investigate this factor. For the future work of this paper, we are going to improve the system with respect
to these issues.
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