
IPSJ Transactions on Computer Vision and Applications Vol.5 55–59 (July 2013)

[DOI: 10.2197/ipsjtcva.5.55]

Express Paper

Mixed-motion Segmentation Using Helmholtz
Decomposition

Cuicui Zhang1,a) Xuefeng Liang1,b) TakashiMatsuyama1,c)

Received: March 11, 2013, Accepted: April 24, 2013, Released: July 29, 2013

Abstract: Motion estimation and segmentation poses challenges in dynamic scenarios where multiple motions are
mixed up and interdependent. However, existing approaches in 2D motion field usually require the mixed motions
to be independent. Algorithms incorporating 3D information have proven to be superior to purely 2D approaches in
many studies. Inspired by this idea, we propose a new algorithm for evolving 3D potential surfaces using Helmholtz
decomposition to represent 2D motion field. Meanwhile, a surface segmentation scheme is introduced to put different
motions onto different layers, so that those interdependent motions can be separated and recovered efficiently. Un-
like other approaches, our method does not require the prior knowledge of the motion model. The performance is
demonstrated using real data under various complex scenarios.
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1. Introduction

Motion segmentation plays a central role in video analy-
sis, such as the content-based retrieval, surveillance, human-
computer interaction, action recognition, robot learning, etc [4].
Extensive studies have been done on the stationary camera sce-
narios. Recently, more attentions are focusing on dynamic back-
grounds with several moving objects in the scene. Background
motion (global motion) includes two cases: 1. one is produced by
a moving camera with unconstrained and a prior unknown mo-
tion occupying the entire view [4]; 2. another is represented by a
dominant motion which occupies majority of a view. In many ap-
plications, the camera/dominant motion is of much less interest,
and solely the local object motion is expected.

To address this problem, several approaches have been pro-
posed for global motion estimation and motion segmentation.
The work in Ref. [10] introduced a parametric form which as-
sumed the global motion model from simple translation to gen-
eral perspective transformation using different parameters. But
this assumption may not always fit the data, especially when the
global motion is represented by a dominant motion. In addition,
if the global motion is mixed with object motions (the global mo-
tion and the object motion are also named as inlier and outlier,
respectively), the inlier estimation may suffer from outliers. To
solve this problem, a joint global motion estimation and segmen-
tation method was proposed in Ref. [3]. It iteratively updates the
inlier model by segmenting the outlier out. A regression scheme,
using gradient descent (GD) [10] or least squares (LS) [9], is also
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applied to refine the inlier model by iteratively excluding the out-
liers that do not fit the current inlier model. An outlier rejection
filter in Ref. [2] explicit filters motion vectors by checking their
similarity in a pre-defined window. The window with low similar-
ity is regarded as the outlier, and removed. RANSAC in Ref. [5]
is a statistical method which estimates the inlier model by itera-
tively updating the probability of inlier. All above methods inves-
tigate the relations between inlier and outliers in 2D space. They
require the multiple motions to be independent. But for interde-
pendent motions, they may fail to deal with.

Unlike existing works, our motion segmentation and recovery
method does not analyze motion vector field directly in 2D space,
but in 3D space. The main contributions of our method include
two aspects: (1) The 2D vector field is transformed into a 3D
potential surface which locates different motions onto different
layers, no matter if they are dependent or independent, rigid or
non-rigid. (2) Based on surface fitting, the global motion is esti-
mated by constructing a smooth surface which approximates the
basic shape of the potential surface. Subsequently, local motions
are recovered by removing the global motion from the original
motion field. Experimental results demonstrate that our method
is more efficient and accurate than those working in the 2D space.

2. Motivation

Dynamic scenarios are usually composed by multiple motions
which are mixed up. Conventionally, the motion field is depicted
with millions of vectors on the image plane which like chaos. See
Fig. 1 (c) for illustration. It is rather challenging to ascertain what
exact motions they are. To reveal the essence of appearance based
multiple motions, it is better to place different motions on differ-
ent layers. To this end, our method transforms 2D motion field
into 3D surfaces. Local extremes on the surface such as peaks,
ridges and valleys depict local motions while smoothing places
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Fig. 1 (a) 2D motion field containing two vortices, one sink, one source,
and its potential surface. (b) a constant 2D motion and its potential
surface. (c) the mixture of (a) & (b).

represent the global motion. In our method the 3D surface is cal-
culated using Helmoholtz decomposition, which has been applied
in visualization and simulation of computational fluid dynamics
(CFD). In Ref. [6], a particle filter based on Helmholtz decom-
position was proposed for the flow estimation. Following is its
fundamental theory. For an arbitrary flow field �ξ, it is decom-
posed into two components: curl-free (divergence) component
∇E (satisfying ∇ × (∇E) = �0) and divergence-free (curl) compo-
nent ∇× �W (satisfying ∇ · (∇× �W) = �0), where E and W are what
we want to obtain the 3D potential surfaces.

�ξ = ∇E + ∇ × �W. (1)

3. Main Theory of the Proposed Method

The 3D potential surfaces of curl and divergence component
are first calculated using energy minimization. Then, the global
motion is approximated based on surface fitting. Finally, local
motions are recovered by subtracting the approximated global
motion from the original motion field.

3.1 Potential Surface Calculation
The potential surface is a surface whose gradient corresponds

to a vector field in a connected region. Figure 1 shows the orig-
inal vector field and its corresponding potential surface. The po-
tential surfaces of the two components, curl and divergence, are
defined as: 1. Vector potential surface denoted by �W, whose curl
operation denotes the curl component ∇ × �W. 2. Scalar potential

surface denoted by E, whose gradient is the divergence compo-
nent ∇E. Where, curl operation is defined as ∇× �W = (∂Wv/∂u)−
(∂Wu/∂v), and gradient is defined as ∇E = (∂Eu/∂u) + (∂Ev/∂v).
They have the following relationship: given a 2D vector field
V = (u, v), where u and v denote the horizontal and vertical com-
ponent of the vector field respectively, assume every vector in V

is rotated 90◦ in counter clockwise order, V⊥ = (−v, u), then

(∇ × �W)⊥ =
∂Wu

∂u
− ∂(−Wv)

∂v
= ∇W. (2)

Since the divergence component ∇E is the projection of the origi-
nal motion field V to the space of the divergence field, the distance
between V and the projected ∇E should be minimal. Therefore,

we apply energy minimization to calculate the potential surface
as follows:

D(E) =
∫
Ω

‖ ∇E − �V ‖2 dΩ, (3)

whereΩ represents the image domain. Similarly, the curl compo-
nent �T = ∇× �W is calculated by minimizing the following energy
function:

G( �W) =
∫
Ω

‖ ∇ × �W − �V ‖2 dΩ. (4)

According to the definition in Section 2, the curl component
does not exist in the divergence component (∇E). And vice versa.
Now, we can derive the following criteria:
∫
Ω

∇ × (∇E)dΩ =
∫
Ω

∇ × (V − ∇ × �W)dΩ = 0,

∫
Ω

∇ · (∇ × �W)dΩ =
∫
Ω

∇ · (V − ∇E)dΩ = 0.

(5)

In the discrete domain, Eq. (5) can be rewritten as:
∑
i∈Ω
∇ × (∇ × �Wi) =

∑
i∈Ω
∇ × Vi,

∑
i∈Ω
∇ · (∇Ei) =

∑
i∈Ω
∇Vi.

(6)

Since they are linear functions, we can abbreviate them as:

S 1E = B, S 2W = C. (7)

where S 1 and S 2 are N × N sparse element matrix, E and W are
the N × 1 vector to be calculated, B and C are vectors that can be
calculated from the right hand side of Eq. (7). Once we have the
potential surfaces E and W by solving Eq. (7), ∇ × �W is subse-
quently obtained by Eq. (2).

3.2 Global Motion Estimation
Global motion estimation is one of the vital steps in our

method. As decomposed into not just divergence component but
also curl component, global motion is estimated from both E and
�W. Here, we first illustrate the method on scalar potential surface
E. The procedure on �W is analogous.

We assume the global motion is a smooth field. However, when
local and global motions are mixed up, local motions present
peaks, ridges and valleys named as outliers on E. To estimate
the global motion from E, we formulate the problem as construc-
tion of a new smooth surface E′, which approximates the smooth
base of E gradually by applying surface fitting twice. Basically,
the first surface fitting plays a role of rejecting outliers.

z = ad0xd + a0dy
d + · · · + ai jx

iy j + · · · + a10x

+a01y + a00,
(8)

To avoid overfitting, a polynomial of low degree of d0 = 5 is used
to produce a surface E1 in the first surface fitting. Afterwards,
the distance D = ||E − E1|| serves to locate the outliers. If D

is greater than a threshold T , then the point is marked as outlier
and will not be considered in the second surface fitting. Thus, the
second surface fitting solely approximates the points beyond out-
liers. To have a better estimation, a polynomial of higher degree
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Fig. 2 Scenario 1: Face motion. (a) the sequence from frame 1 to frame 50. (b) motion field of one frame.
(c) �W with local motions. (d) �W without local motions. (e) E with local motions. (f) E without
local motions. (g) potential surface of estimated global motion. (h) recovered global motion field.
(i) potential surface of estimated local motion. (j) recovered local motion field. (k) segmentation
result.

of d1 = 10 is employed. Finally, we will have a global motion
surface E′ which best approximates the base of E. The global
motion field of divergence component is calculated by G1 = ∇E′.

Similarly, the global motion field of curl component is com-
puted by G2 = ∇ × �W ′. The final global motion field is estimated
by linear combination of G1 and G2.

3.3 Local Motion Recovery
After obtaining global motion, local motions can be recovered

directly by subtracting the global motion from the original motion
field.

4. Experiments

4.1 Testing Data
Face Motion Sequence. This scenario demonstrates a chal-

lenging problem in dynamic facial expression analysis: expres-
sion is often mixed up with the head motion. In many systems,
head motion is of less interest and expected to be taken off. Fig-
ure 2 (a) shows a sequence in which the head is rotating, mean-
while, the eyes are blinking. In this data, the head motion is a
dominant motion. In the optical flow (b), the eye motion shows a
misleading direction because of fusing with the head motion. In
(c) and (e), we can easily see two outliers on the potential sur-
faces which indicate the eye blinking. By applying our method,
the head motion (h) and the eye motion (j) are recovered. (j)
shows the the actual eyes pointing to the lower jaw.
Checkerboard Sequence. This is a practical and pretty challeng-
ing case taken by a handheld camera. This scene involves three
motions: a rotating camera view, in which there exist a rotating
basket and a translating box. See Fig. 3 (a). This data is a bench-
mark sequence in Ref. [11]. In their method, several checker-
boards are placed in the scene to obtain prominent feature points
for motion segmentation. Our method, in contrast, does not rely
on these strong key features. Those checkerboards contribute lit-
tle help for us. In other words, other patterns can replace the

checkerboard when using our method. In the optical flow (b), it
is tricky to figure out what motions are involved exactly. But,
on the potential surfaces (c) and (e), it is not difficult to see two
outliers indicating two local motions. After surface fitting, two
local motions are cleared depicted in (i). The recovered global
motion (h), local motions (j) and segmentation (k) demonstrate
the robustness of our method in rather complex scenarios.

4.2 Comparison with the State-of-the-art
We compared our method with five well-known motion seg-

mentation methods including: (1) the joint global motion estima-
tion and segmentation (GME-SEG) in Ref. [3], (2) and (3) are the
iterative estimation method based on least-square (LS) [9], and
gradient descent (GD) [10], (4) is an outlier rejection filter (Fil-
ter) in Ref. [2], and (5) is the RANSAC [5]. The vector field is
calculated by optical flow method in Ref. [1] and optimized by
[7], [8]. The segmentation results on two scenarios of these five
and ours are shown in Fig. 4. Where, the local motions are illus-
trated in white, the global motion and static background are in
black. We can see the proposed method outperforms the five ref-
erence methods in both two scenarios. Following is the analysis
in detail.

GME-SEG [3] defines two types of outliers: the noisy mo-
tion (Type 1), and other information that does not fit their pre-
defined inlier model well (Type 2), such as moving objects. This
method is robust to detect the outliers. However, its segmenta-
tion scheme based on MRF-Bayesian algorithm cannot classify
Type 1 and Type 2 outliers well, especially when the noises are
close to the moving objects. Figure 4 (b) shows some noises are
mis-classified as object motions. The iterative estimation method
based on LS and GD segment two data in Fig. 4 (c) and (d), re-
spectively. LS works poorly when the inlier does not occupy the
entire view. Thus, it treats head motion as outlier and can not find
the eye motions in the first scenario. The result of GD in the first
scenario just looks like chaos. GD also faces the same problem in
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Fig. 3 Scenario 2: Checkerboard sequence. (a) the sequence from frame 1 to frame 27. (b) motion field
of one frame. (c) �W with local motions. (d) �W without local motions. (e) E with local motions.
(f) E without local motions. (g) potential surface of estimated global motion. (h) recovered global
motion field. (i) potential surface of estimated local motion. (j) recovered local motion field. (k)
segmentation result.

Fig. 4 Segmentation results of five reference methods and ours on two scenarios (a) motion field of one
frame, (b) GME-SEG method [3], (c) LS [9], (d) GD [10], (e) Filter [2], (f) RANSAC [5], (g) our
method.

these two scenarios as LS. The Filter in Ref. [2] explicitly filters
motion vectors by checking their similarity in a pre-defined win-
dow. Hence the window size must be well decided, otherwise,
too many valuable motion vectors are removed. The results of
the second scenario in Fig. 4 (e) show the most inner vectors are
excluded due to inappropriate window size. Note that, Filter in
Ref. [2] is the only one that can locate eye blinking among five
reference methods in the first scenario. The reason might be the
default window size is approximately defined for the eye motions.
RANSAC in Ref. [5] is a common method for outlier detection,
and usually requires many iterations to get the reliable results. It
often works worse when the frame has low resolution. Figure 4 (f)
shows the segmented results are noisy in both scenarios. More-
over, these five reference methods suffer from a common limita-
tion: they usually perform well on independent motions, but show
weak ability on the interdependent motions in a complex scene.

We also did numerical evaluation using the segmentation error,
defined by the mis-segmentation percentage in outliers and inlier
(see Eq. (9)). The object region is manually cropped out in each
frame to form the ground-truth data. It is easy to implement for
the second scenario, because the edges of objects are obvious.

Table 1 Segmentation errors of existing methods and ours.

Method Segmentation Error (%)
GME-SEG 21.07
LS 15.28
GD 24.66
Filter 8.17
RANSAC 18.00
Ours 2.85

However, it is tricky for the first scenario since the eye region is
not well defined. Thus, the comparison is performed only on the
second scenario. Table 1 shows the results. We can see a signifi-
cant superiority of our method in terms of segmentation error.

Error =
misPixelsInOutliers + misPixelsInInlier

totalPixels
(9)

5. Conclusion

This paper proposes a robust motion segmentation and recov-
ery method. It performs well on a wide range of motions, inde-
pendent and dependent, rigid and non-rigid, single and multiple
motions. Because we transform 2D vector fields into 3D potential
surfaces using the Helmholtz decomposition, global motion and
local motions are separated onto different layers. This makes mo-
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tion segmentation be done efficiently. Moreover, applying surface
fitting on the potential surface, the global and local motions are
recovered accurately. Compared with several well-known works,
our method requires no assumption of motion model, and is not
sensitive to noises. Results demonstrate that our method performs
much better in challenging scenarios where global and local mo-
tions are mixed up and interdependent.
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