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1 Introduction

In nature fish collective behaviors governed by the
individual-level interactions bring fish many benefits,
like energy saving during migration, protection from
predators, etc. This has been attracting many re-
searchers to analyze the mechanism of the individual-
level interactions in fish groups. The main contribution
of this paper is that we propose a vision-based track-
ing system for a fish group to capture each individual’s
motion data in 3D space, including position and orien-
tation which are very useful to infer the underlying fish
interaction rules.
In our tracking system, a fish group, with a small size

around 3 to 10 members, swims in a customized fish
tank, as shown in Figure 1. To capture their 3D motion
data, we use three synchronized cameras outside the fish
tank: one for front-view, one for right-view, and one for
top-view.
Tracking in such an environment has a challenge of

maintaining the object association due to occlusions
among individuals and object mirrors reflected at the
fish-tank surfaces. To tackle this challenge, we employ
shape and motion priors which are implemented as (1)
the 3D fish shape which can be parameterized based on
a 3D fish shape model consisting of a midline and el-
liptical cross sections [1] and (2) mixture particle filter
[3] which utilizes current observation and fish motion
prior estimated based on historical information. In par-
ticular, the calculation of the likelihood of the particle
filter requires an efficient forward projection from 3D
shape model to 2D image planes considering the effect
of light refraction. Therefore, we utilize a pixel-wise
varifocal camera model (PVCM) [2], which creates an
offline lookup table mapping between sampled points on
the inner fish tank surface (in contact with water) and
the corresponding projection rays. Based on this lookup
table, for each 3D underwater point, its projection ray
can be estimated by a quickly converging iteration.

2 Tracking Approach

2.1 3D Fish Shape Model

Our 3D fish shape model is based on a flexible midline
which is responsible for shape changing, and fixed ellip-
tical cross sections approximating fish surface. To pa-
rameterize them in a local fish coordinate system (FCS),
we make three assumptions of fish motion.

Assumption 1 The midline lies in a plane and only
bends laterally.

Figure 1: Tracking environment

Figure 2: Fish shape model and fish coordinate system
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Assumption 2 The head part of midline does not
bend.

Assumption 3 Fish yaw and pitch, but do not roll.

Based on Assumption 2, on the midline, we regard
the nose point, Pn, as the origin of FCS and the head

part,
−−−→
PhPn, lies on the X-axis. Based on Assumption

1, we assume the Y-axis fish yaw around with is per-
pendicular to the plane the midline lies in. Then the
Z-axis fish pitch around with can be determined as a
vector perpendicular to the XY-plane. Finally a FCS is
defined as shown in Figure 2. Then we can do the pa-
rameterization for the midline and ellipses of our shape
model in the FCS. Assume s ∈ [0, 1], represents the ratio
of midline starting at the nose point Pn. Then we use
a quadratic Bezier curve with parameters Πc to model
the midline. For every s, there is a corresponding ellipse
perpendicular to the midline. We assume its major axis
is parallel with the Y-axis, and that its minor axis lies
in the XZ-plane and is perpendicular to the tangent line
of the midline at the corresponding point. Then we use
a cubic function with parameters Πa to model the curve
of major axis, and a quartic function with parameters
Πb to model the curve of minor axis.
As a result, every 3D fish shape can be generated

by a parameter set {Πc,Πa,Πb}. To present a 3D
fish shape in the world coordinate system (WCS), we
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need to know the translation vector Tf2w and rota-
tion matrix Rf2w from FCS to WCS. Suppose in the
WCS, the nose position denoted by r, and the head-
ing direction denoted by a unit vector h, are known,
then Tf2w = r. Based on Assumption 3, the pitch

axis is the cross-product of the vertical g = [0 1 0]
T

with the heading h, and the yaw axis is the cross-
product between the heading and the pitch axis. Then
Rf2w = [h h× (g× h) g× h]. Eventually every fish in
WCS can be modeled by {r,h,Πc,Πa,Πb}.

2.2 Mixture Particle Filter

Our tracking framework is based on a Dynamic
Bayesian Network (DBN) in which at each time there
are two phases: prediction and update. Firstly in the
prediction phase, a proposal distribution of target state
is predicted based on historical information. Then in
the update phase, the current observation is used to cre-
ate a posterior distribution of target state. To approxi-
mate the non-Gaussian distribution of multiple targets’
state, we employ the mixture particle filter (MPF). In
MPF, the state distribution of each target is approx-
imated by a set of particles. In the prediction phase,
the particles responsible for the previous frame poste-
rior distribution of different targets drift and diffuse in-
dependently to form a proposal distribution for each
target. In the update phase, firstly each particle’s like-
lihood is calculated. Then for a set of particles responsi-
ble for the same target, we do the importance sampling
by regarding each particle’s likelihood as its weight. Fi-
nally, a set of unweighted particles are produced to ap-
proximate each target’s posterior distribution. Then in
the next frame, the same process continues.

The key for MPF is to compute the likelihood of each
particle represented as x = {r,h,Πc,Πa,Πb}. To calcu-
late the likelihood of a given x, firstly we reconstruct a
3D fish surface in WCS based on our fish shape model.
Then we use PVCM to forward project the generated
3D surface onto each of image planes to get a set of 2D
regions. For each projected region, we use the corre-
sponding captured image to calculate the F-score as its
likelihood. Finally, the likelihood of each particle is the
multiplication of the likelihood of its corresponding 2D
projected regions on each of image planes.

3 Experiment

In our experiment, the frame rate of each camera for
capturing images was 30 frames per second. By using
the proposed tracking approach, we successfully tracked
each fish in a group with 6 members. One snapshot of
the tracking result is shown in Figure 3. The first row
shows 2D projected contours of the 3D fish model in
the tracking results. In these three figures, the contours
with the same color are produced by the same estimated
fish. The second row shows another visualization of our
tracking results. The red regions represent the fore-
ground extracted by background subtraction, while the
green ones are the regions surrounded by the projected

Figure 3: Visualization of tracking results

contours which are the same as the ones in the first
row. The yellow regions show the overlaps between red
regions and green regions. From Figure 3, despite oc-
clusions and object mirrors reflected on the fish tank
surface, we can see each fish is successfully tracked.
Since we want to track mainly the position r and ori-

entation h of each fish, we did some evaluation for them.
Firstly, for the same image sequences, we created the
ground truth for r and h by manually picking up the
projections of the nose point Pn and the end point of
head part Ph on each image. Then we used backward
projection to estimate Pn and Ph in WCS. For each
fish, we regard the estimated Pn as the ground truth

for r, and the estimated
−−−−→
PhPn

|
−−−−→
PhPn|

as the ground truth for

h. Then we calculated the average error and standard
variance for the tracking results of randomly picked 20
frames. For position, based on the Euclidean distance,
the average error is around 4.41 millimeter and the stan-
dard variance of the error distance is around 1.61 mil-
limeter. For orientation, based on the angle’s cosine
value of two vectors, the average error is around 0.05
and the standard variance is around 0.06.

4 Conclusion

Currently in a fish group with 6 members, each indi-
vidual can be successfully tracked with a relatively high
accuracy. However, the running speed is slow. In the
future, we will focus on speeding up our tracking system
to make it available for online tracking.
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