
1

Real-Time Dynamic 3D Object Shape
Reconstruction and High-Fidelity Texture Mapping

for 3D Video
T. Matsuyama, X. Wu, T. Takai, and T. Wada

Abstract— 3D video is a real 3D movie recording the
object’s full 3D shape, motion, and precise surface texture.
This paper first proposes a parallel pipeline processing
method for reconstructing dynamic 3D object shape from
multi-view video images, by which a temporal series of
full 3D voxel representations of the object behavior can
be obtained in real-time. To realize the real-time process-
ing, we first introduce a plane-based volume intersection
algorithm: represent an observable 3D space by a group
of parallel plane slices, back-project observed multi-view
object silhouettes onto each slice, and apply 2D silhouette
intersection on each slice. Then, we propose a method
to parallelize this algorithm using a PC cluster, where
we employ 5 stage pipeline processing in each PC as
well as slice-by-slice parallel silhouette intersection. Several
results of the quantitative performance evaluation are
given to demonstrate the effectiveness of the proposed
methods. In the latter half of the paper, we present an
algorithm of generating video texture on the reconstructed
dynamic 3D object surface. We first describe a naive view-
independent rendering method and show its problems.
Then, we improve the method by introducing image-based
rendering techniques. Experimental results demonstrate
the effectiveness of the improved method in generating
high fidelity object images from arbitrary viewpoints.

Index Terms— 3D video, real-time 3D volume recon-
struction, PC cluster, parallel volume intersection, video
texture mapping

I. I NTRODUCTION

3D video [3] is a real movie recording dynamic
visual events in the real world as is: time varying
3D object shape with high fidelity surface texture. Its
applications cover wide varieties of personal and social
human activities: entertainment (e.g. 3D games and 3D
TV), education (e.g. 3D animal picture books), sports
(e.g. sport performance analysis), medicine (e.g. 3D
surgery monitoring), culture (e.g. 3D archive of tradi-
tional dance) and so on.

In recent years, several research groups developed
real-time full 3D shape1 reconstruction systems for 3D

1While many real-time stereo systems (e.g. [8] [9] [10] [11] [12])
and Image Based Visual Hull systems [13] [14] have been developed,
they can reconstruct only partial 2.5D shape.

video [3] [4] [5] [6] [7]. All these systems focus on
capturing human body actions and share a group of dis-
tributed video cameras for real-time synchronized multi-
viewpoint action observation. While the real-timeness
of the earlier systems [3] [5] was confined to the syn-
chronized multi-viewpoint video observation alone, the
parallel volume intersection on a PC cluster has enabled
the real-time full 3D shape reconstruction [4] [6] [7].

Note that even if its accuracy is limited, the real-time
dynamic full 3D object shape reconstruction has many
applications such as human behavior analysis in sports
(e.g. golf swing) and medical rehabilitations, on-site
clothes fitting, motion capture for making animations,
and perceptual user interface systems [15] as well as
generating 3D video.

To cultivate the 3D video world and make it usable in
everyday life, we have to solve the following technical
problems:
• Computation Speed:We have to develop both faster

machines and algorithms, because near frame-rate
3D shape reconstruction has been attained only in
coarse resolution.

• High Fidelity: To obtain high fidelity 3D video in
the same quality as ordinary video images, we have
to develop high fidelity texture mapping methods as
well as increase the resolution.

• Wide Area Observation:To capture high resolution
3D video, the systems developed so far restricted
their 3D observable spaces to rather small areas:
especially those for teleconference systems [12]
[14] that are limited to the upper half of a human
body. To extend the 3D observable space while
not degrading resolution, for example, to capture
dancing people, we have to introduce active object
tracking capability [16] and/or increase the number
of cameras drastically.

• Data Compression:Since naive representation of
3D video results in huge data, effective compression
methods are required to store and transmit 3D video
data [17].

• Editing and Visualization:Since editing and visual-



2

Voxel data

Marching Cubes

Method
Texture Mapping

Patch data

3D video

......

......

Volume Intersection

Silhouette Extraction

Fig. 1. 3D video generation process

ization of 3D video are conducted in the 4D space
(3D geometric + 1D temporal), we have to develop
human-friendly 3D video editors and visualizers
that help a user to understand dynamic events in
the 4D space.

This paper first describes an overall process of gener-
ating 3D video and then proposes a plane-based volume
intersection method followed by its parallel pipeline
implementation using a PC cluster2. With this method,
a temporal series of full 3D voxel representations of the
object behavior can be obtained in real-time. Several
results of its quantitative performance evaluation are
given to demonstrate its effectiveness. In the latter half
of the paper, we present an algorithm of generating
video texture on the reconstructed dynamic 3D object
surfaces. We first describe a naive view-independent
rendering method and show its problems. Then, we
improve the method by introducing image-based ren-
dering techniques. Experimental results demonstrate the
effectiveness of the improved method in generating high
fidelity object images from arbitrary viewpoints3.

II. BASIC METHOD OF3D VIDEO GENERATION

Figure 1 illustrates the basic process of generating a
3D video frame in our system:

1) Synchronized Multi-View Image Acquisition: A
set of multi-view object images are taken simul-

2An earlier version was published in ISPA03 [1].
3An earlier version was published in 3DPVT 2002 [2].

taneously by a group of distributed video cameras
(Figure 1 top row).

2) Silhouette Extraction: Background subtraction is
applied to each captured image to generate a set
of multi-view object silhouettes (Figure 1 second
top row).

3) Silhouette Volume Intersection: Each silhouette
is back-projected into the common 3D space to
generate a visual cone encasing the 3D object.
Then, such 3D cones are intersected with each
other to generate the voxel representation of the
object shape (Figure 1 third bottom).

4) Surface Shape Computation: The discrete
marching cubes method [18] is applied to convert
the voxel representation to the surface patch repre-
sentation and then, the surface patch is deformed
to increase the accuracy of the reconstructed 3D
shape [19] (Figure 1 second bottom).

5) Texture Mapping: Color and texture on each
patch are computed from the observed multi-view
images (Figure 1 bottom).

By repeating the above process for each video frame,
we can create a live 3D motion picture. Note that in
the current implementation, since the surface patch de-
formation requires large computation time (about a few
minutes per frame) due to its naive iterative optimization
process, the entire process above cannot run in real-
time, while the 3D shape reconstruction and the texture
mapping run in near video-rate respectively.

In the following sections, we describe technical details
of our real-time 3D shape reconstruction system and
high fidelity video texture mapping algorithm. As for
the surface mesh deformation to increase the 3D shape
accuracy, refer to [19].

III. R EAL-TIME DYNAMIC 3D OBJECTSHAPE

RECONSTRUCTIONSYSTEM

A. System Organization

Figure 2 illustrates the hardware organization of our
real-timeactivedynamic 3D object shape reconstruction
system. It consists of

• PC cluster: 30 node PCs (dual Pentium III 1GHz)
are connected through Myrinet, an ultra high speed
network (full duplex 1.28Gbps). PM library for
Myrinet PC clusters [20] allows very low latency
and high speed data transfer, based on which we
can implement efficient parallel processing on the
PC cluster.

• Distributed active video cameras: Among 30 PCs,
25 have calibrated Fixed-Viewpoint Pan-Tilt (FV-
PT) cameras [21], for active object tracking and



3

Fig. 2. PC cluster for real-time active dynamic 3D object shape
reconstruction system.

image capturing. In the FV-PT camera, the projec-
tion center stays fixed irrespectively of any camera
rotations, which greatly facilitates real-time active
object tracking and its 3D shape reconstruction in
a wide spread area [16].

We employ volume intersection [23] [24] [25] [26]
[27] [28] as a basic computational algorithm to obtain the
3D shape of the object. This is because it can compute
the full 3D object shape by well defined geometric
computations, while stereo methods involve difficult
matching processes as well as can generate only partial
2.5D shape.

As is well known, however, the 3D shape recon-
structed by the volume intersection is just an approx-
imation. To increase the accuracy of the reconstructed
3D shape, [29] proposed the space carving method,
where photometric information as well as multi-view
silhouettes are employed. In [19], we proposed a de-
formable 3D mesh model to reconstruct an accurate 3D
object shape by integrating object silhouettes, photo-
metric properties, and 3D motion flows computed from
multi-view video data.

Here we confine ourselves to the problem of how to
realize real-time volume intersection.

Since the volume intersection involves a considerable
amount of arithmetic operations, many methods for its
efficient computation have been proposed. [23], [28] and
[7] employed octree-based volume intersection methods.
[13], on the other hand, proposed an image-based volume
intersection, where a 2.5D depth map from an arbitrary
viewpoint is generated by projecting and intersecting
multi-view object silhouettes on the image plane cor-
responding to that viewpoint.

To realize efficient volume intersection, we first de-
veloped the plane-based volume intersection method,
where the 3D voxel space is partitioned into a group
of parallel planes and the cross-section of the 3D object
volume on each plane is reconstructed. Secondly, we de-
vised the Plane-to-Plane Perspective Projection (PPPP)

11

22

Base Slice

Base Silhouette

Fig. 3. Plane-based volume intersection method

algorithm to realize efficient plane-to-plane projection
computation. Thirdly, to realize real-time processing, we
implemented parallel pipeline processing on a PC cluster
system. In what follows, we describe these methods in
details.

B. Plane-based Volume Intersection Method

Figure 3 illustrates the plane-based volume intersec-
tion method. For each camera, an object silhouette is
first projected onto a common base plane to generate
a base silhouette, which then is mapped onto the other
planes (Figure 3 left). The cross-section of the object
on each plane can be obtained by calculating the 2D
intersection among the projected silhouettes (Figure 3
right). This plane-to-plane back-projection (homogra-
phy) [30] is computationally less expensive than general
3D perspective projection:

• General perspective projection from 3D point
(X, Y, Z) to 2D point (x1/x3, x2/x3) can be rep-
resented by the following equation:




x1

x2

x3


 =




p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34







X
Y
Z
1


 . (1)

This transformation requires9 additions,9 multi-
plications, and2 divisions.

• In the case of the plane-to-plane projection, where
the source 3D point is constrained on a 2D plane,
the projection equation is simplified to the following
equation:




x1

x2

x3


 =




h11 h12 h13

h21 h22 h23

h31 h32 h33







X
Y
1


 . (2)

This requires6 additions,6 multiplications, and2
divisions per point.

To accelerate the plane-to-plane projection computa-
tion further, we developed the following algorithm.



4

B

A

C

o

o

P

P

C

A B
B C

CA

A C B C

Fig. 4. Linear PPPP algorithm

C. Accelerated PPPP Algorithm

Based on the geometric relations between a pair of
planes involved in the projection, the acceleration of the
PPPP algorithm can be done in the following two ways:

1) For planes which are not parallel, we devised the
linear PPPP algorithm (Figure 4).

2) For parallel planes, we apply the plane-wise PPPP
algorithm(Figure 5).

As will be described below, both algorithms consist
of simple linear computations, which can be executed
efficiently by popular graphics hardware.
Linear Plane-to-Plane Perspective Projection

In Figure 4, we want to map a silhouette on plane
A onto B, where A and B are not parallel.A

⋂
B

denotes the intersection line between the planes andO
the center of perspective projection. LetP denote the
line that is parallel toA

⋂
B and passingO. Then, take

any plane includingP (C in Figure 4), the image data
on the intersection lineA

⋂
C is projected ontoB

⋂
C.

As shown in the right part of Figure 4, this linear (i.e.
line-based) perspective projection can be computed by a
scaling operation, sinceA

⋂
C andB

⋂
C are parallel to

each other. By rotating planeC around lineP , we can
map the entire 2D image onA onto B.

In [6], we analyzed the computational complexity of
this linear PPPP method and showed its computational
efficiency. [13] employed a similar plane-based projec-
tion method to map a silhouette on an image plane
to another and proved its computational efficiency. The
difference between their method and our method rests in
that (1) we reconstruct full 3D shape while [13] generates
a 2.5D depth map for a specified viewpoint and (2) we
employ the intersecting lineA

⋂
B to linearize the plane-

to-plane projection while [13] used a group of epipolar
lines.
Plane-wise Plane-to-Plane Perspective Projection

As shown in Figure 5, the projection between two
parallel planes is simplified to 2D isotropic scaling and

Translation +  Scaling
(Plane-wise PPPP)

Base Plane

CCD Plane
o

Linear-w
ise PPPP

Fig. 5. Plane-wise PPPP

translation: [
x1

x2

]
= s

[
X
Y

]
+

[
tx
ty

]
, (3)

wheres represents the scaling and(tx, ty) the translation
vector. Equation (3) shows that this transformation re-
quires2 additions and2 multiplications per point. Since
this transformation is a pure 2D geometric transforma-
tion, 2D image processing hardware can be employed to
accelerate the computation.

To realize real-time 3D shape reconstruction, we next
propose a parallel pipeline processing method for the
above mentioned plane-based volume intersection.

D. Parallelized Volume Intersection Method

The process of the plane-based volume intersection
method can be divided into the following stages:

1) Back-projection

a) Projection from the image plane of each
camera onto the common base plane (Linear
PPPP)

b) Projection from the base plane to the other
parallel planes (Plane-wise PPPP)

2) Silhouette intersection on each plane

To make this processing parallel on our PC cluster, we
observe:

• Since the process a) of stage 1 is closely connected
with image capturing and silhouette extraction pro-
cesses, it should be executed on the same PC that
captures an image.

• Since the silhouette intersection on each plane can
be done independently of that on the others, we
partition a set of parallel planes into a group of
subsets and assign a subset to each PC, which
computes the silhouette intersection on each plane
included in its assigned subset.

• To realize the above parallel silhouette intersection,
we have to make each PC have a full set of multi-
view silhouettes. That is, after computing its own



5

Communication

Silhouette
Image

Base Plane
Silhouette
Image

Final Result

node1 node2 node3

Captured
Image

Silhouette
on a slice

Loop Loop Loop

Object Area
on a slice

SIP

PPP

BPP

INT

SIP SIP

BPPBPP

PPP PPP

INT INT

Fig. 6. Processing flow of the parallel pipelined 3D shape recon-
struction.

base plane silhouette, each PC broadcasts that data
to all the other PCs. As will be proved later, this
broadcasting does not introduce large overhead,
because the data size transmitted is small (i.e. 2D bit
image data representing the base plane silhouette)
and the network speed is very high. Note that this
silhouette duplication enables completely parallel
silhouette intersection on the planes without any
overhead.

Figure 6 illustrates the processing flow of the parallel
pipelined 3D shape reconstruction. It consists of the
following five stages:

1) Image Capture :Triggered by a capturing com-
mand, each PC with a camera captures a video
frame (Figure 6 top row).

2) Silhouette Extraction :Each PC with a camera
extracts an object silhouette from the video frame
(Figure 6 second top row).

3) Projection to the Base-Plane :Each PC with a
camera projects the silhouette onto the common
base-plane in the 3D space (Figure 6 third top
row).

4) Base-Plane Silhouette Duplication :All base-plane
silhouettes are duplicated across all PCs over the
network so that each PC has the full set of all base-
plane silhouettes (Figure 6 forth top row). Note
that the data are distributed over all PCs in the
system (i.e. PCs with and without cameras).

5) Object Cross Section Computation :Each PC com-
putes object cross sections on specified parallel
planes in parallel (Figure 6 three bottom rows).

In addition to the above parallel processing, we
introduced pipeline processing on each PC: 5 stages
(corresponding to the 5 steps above) for a PC with

Fig. 7. Average computation time for each pipeline stage.

a camera and 2 stages (the step 4 and 5) for a PC
without a camera. In this pipeline processing, each stage
is implemented as a concurrent process and processes
data independently of the other stages. Note that since a
process on the pipeline should be synchronized with its
preceding and succeeding processes and, moreover, the
stage 5 silhouette intersection cannot be executed until
all silhouette data are prepared, the output rate (i.e. the
rate of the 3D shape reconstruction) is limited to the rate
of the slowest stage.

E. Performance Evaluation

In the experiments of the real-time 3D volume recon-
struction, we used 6 digital IEEE1394 cameras (SONY
DFW-VL500) placed at the ceiling (like Figure 2) for
capturing multi-view video data of a dancing human.
We will discuss their synchronization method later. The
size of input image is640×480 pixels and we measured
the time taken to reconstruct one 3D shape in the voxel
size of 2cm× 2cm× 2cm contained in a space of 2m×
2m × 2m.

In the first experiment, we analyzed processing time
spent at each pipeline stage by using 6 - 10 PCs for com-
putation. Figure 7 shows the average computation time
4 spent at stages “Silhouette Extraction”, “Projection
to the Base-Plane”, “Base-Plane Silhouette Duplication”
and “Object Cross Section Computation”. Note that the
image capturing stage is not taken into account in this
experiment and will be discussed later.

From this figure, we can observe the following:

• The computation time for theProjection to the
Base-Planestage is about 18ms, which proves
the accelerated PPPP algorithm is very efficient.
To verify the computational efficiency of the ac-
celerated PPPP algorithm, we replaced it with a

4For each stage, we calculated the average computation time of
100 video frames on each PC. The time shown in the graph is the
average time for all PCs.



6

Fig. 8. Performance of the accelerated PPPP algorithm.

naive silhouette projection method, where an object
silhouette in an image plane is projected onto the
base plane pixel by pixel. Figure 8 compares the
average computation time spent at each pipeline
stage between 6 PCs with the accelerated PPPP
(left) and 6–12 PCs with the naive projection (right).
In all cases we used 6 cameras. This figure shows
that the accelerated PPPP algorithm plays a crucial
role in realizing real-time processing. Note that in
the latter cases, the silhouette duplication stage was
also elongated considerably. The reason for this
may be that the thread scheduling for the pipeline
processing introduced additional overheads since
the base silhouette projection stage took a very long
time compared with the other stages.

• As is shown in the leftmost bars in Figure 7, with
6 PCs (i.e. with no PCs without cameras), the
bottleneck for real-time 3D shape reconstruction
rests at theObject Cross Section Computationstage,
since this stage consumes most computation time
(i.e. about 40ms).

• By increasing the number of PCs, the time taken
for that most expensive stage decreases consider-
ably, while slightly increasing the data duplication
overhead (the right part of Figure 7). This proves
the proposed parallelization method is effective.

• With more than 8 PCs, we can realize video-rate
3D shape reconstruction.

In the second experiment, we measured the total
throughput of the system including the image capturing
process by changing the numbers of cameras and PCs.
Figure 9 shows the throughput5 to reconstruct one 3D
shape.

In our PC cluster system, we developed two methods
for synchronizing multi-view video capturing: use an

5The time shown in the graph is the average throughput for 100
frames.

(a) Soft Trigger

(b) Hard Trigger

Fig. 9. Computation time for reconstructing one 3D shape.

external trigger generator (Hard Trigger ) and control
the cameras through network-communication (Soft Trig-
ger).

From Figure 9 we can get the following observations:
• In both synchronization methods, while the through-

put is improved by increasing PCs, it saturates at
a constant value in all cases: 80∼ 90ms in both
methods.

• Comparing the hard and soft triggers, they show
almost similar performance.

Since as was proved in the first experiment, the
throughput of the computation itself is about 30ms, the
elongated overall throughput is due to the speed of the
image capture stage as well as the overhead involved
in the process synchronization during the pipeline pro-
cessing. That is, although a camera itself can capture
images at a rate of 30 fps individually, the image capture
synchronization reduces its frame rate down by half. This
is partly because the external hard and soft triggers for
synchronization are not synchronized with the internal
hardware cycle of the camera and partly because it takes
some time to synchronize PCs and transfer image data
to PC memory:
• First of all, the camera we use (SONY DFW-

VL500) reduces its frame rate down to 15 fps in



7

Fig. 10. Performance evaluation in the case of 1cm× 1cm× 1cm
voxels.

the external hardware trigger mode. This is a major
reason why the overall throughput is reduced in the
hard trigger method.

• In the soft trigger method, since the actual image
capturing is done based on the internal clock of
each camera, the capturing timing varies from PC
to PC slightly (i.e. at most 33msec). This internal
clock driven image capturing also introduces a delay
between the capturing command issued by a PC
and the actual image capturing. Note that the hard
trigger guarantees the exactly synchronized image
capturing.

• We use the isochronous data transfer mode of IEEE
1394 and a Linux device driver, which introduce
some overheads for synchronized image data trans-
fer via IEEE 1394 line and buffering in the driver
software.

In the third experiment, we increased the resolution:
1cm× 1cm× 1cm voxels in a space of 2m× 2m× 2m.
Figure 10 illustrates the overall throughputs for 6 PCs at
the 2cm voxel resolution (left) and 8–24 PCs at the 1cm
voxel resolution (right). In all cases we used 6 cameras.
While we can speed up the computation by increasing
PCs, it will not possible to realize over 10 volume per
second with the current system at the resolution of 1cm
voxels.

In summary, the experiments proved the effectiveness
of the proposed real-time 3D shape reconstruction sys-
tem: the plane-based volume intersection method, its
acceleration algorithm, and the parallel pipeline imple-
mentation. Moreover, the proposed parallel processing
method is flexible enough to scale up the system by
increasing numbers of cameras and PCs. While we used
off-the-shelf devices, we have to develop sophisticated
video capturing hardware including cameras to realize
video-rate 3D shape reconstruction. To increase the voxel
resolution, we have to employ faster PCs and/or make
full use of graphics hardware.

Fig. 11. Voxel representations of a 3D object behavior

(a) (b)

Fig. 12. (a) surface patch model generated by the discrete Marching
cube method and (b) surface patch model after deformation

IV. H IGH FIDELITY TEXTURE MAPPING ALGORITHM

Figure 11 illustrates snapshots of 3D voxel data of a
dancing person at the resolution of1cm × 1cm × 1cm
reconstructed by the above described system. Then we
apply to each voxel data the discrete marching cubes
method [18] to convert the 3D object shape into the
triangular patch representation. Figure 12(a) illustrates
a close-up of the generated triangular patch data. As is
well known and obvious from this figure, the 3D shape
generated is not smooth and its concave parts (e.g. neck)
are not well reconstructed. To solve these problems, we
developed a deformable 3D mesh model, which uses
photometric and motion information as well as multi-
view silhouettes [19]. Figure 12(b) illustrates the result
of the deformation, where a more accurate and smooth
3D object shape is obtained.

Since the currently implemented deformation program
requires large computation time (about a few minutes
per frame) due to its naive iterative optimization process
and a large number of vertices (i.e. 12,000 – 15,000
vertices per volume at 1cm voxel resolution), the real-
time processing is broken down at this stage and the
subsequent texture mapping process is done as post-
processing, even if the mapping itself runs almost in
real-time by a PC with a modern graphics engine.



8

In this section, we propose a novel texture mapping al-
gorithm to generate high fidelity 3D video. The problem
we are going to solve here is how we can generate high
fidelity object images from arbitrary viewpoints based
on the 3D object shape with limited accuracy.

[3] first mapped each surface patch back to multi-view
images to obtain multi-view textures for each patch and
then took a weighted average of those textures. As will
be described later, such view-independent patch-based
texture mapping introduces jitters due to inaccurate 3D
object shape and/or misalignments involved in the cam-
era calibration.

On the other hand, [11] [13] employed image-based
rendering methods to generate arbitrary view images
based on 3D shape data reconstructed from multi-view
images, where a virtual view direction is specified to
control the blending process of multi-view images. While
such image-based rendering methods can avoid jitters in
generated images, image sharpness is degraded due to
the blending operation.

In what follows, we first describe a naive rendering
method which is similar to [3] and show problems in a
view-independent patch-based rendering method. Then,
we improve the method by introducing image-based
rendering techniques.

A. Naive Algorithm: Viewpoint Independent Patch-
Based Method

We first implemented a naive texture mapping algo-
rithm, which selects the most ”appropriate” camera for
each patch and then maps onto the patch the texture ex-
tracted from the image observed by the selected camera.
Since this texture mapping is conducted independently
of the viewer’s viewpoint of 3D video, we call it the
Viewpoint Independent Patch-Based Method (VIPBM).
Algorithm (Figure 13)

1) For each patchpi, do the following processing.
2) Compute the locally averaged normal vectorVlmn

using normals ofpi and its neighboring patches.
3) For each cameracj , compute viewline vectorVcj

directing toward the centroid ofpi.
4) Select such camerac∗ that the angle betweenVlmn

andVcj
becomes maximum.

5) Extract the texture ofpi from the image captured
by camerac∗.

This method generates a fully textured 3D object
shape, which can be viewed from arbitrary viewpoints
with ordinary 3D graphics display systems. Moreover,
its data size is very compact compared with that of the
original multi-viewpoint video data.

Vlmn

pi

ck cl

cj

Fig. 13. Viewpoint independent patch-based method

Veye -> pi

Npi Vcj -> pi

Vcn -> piVc1 -> pi

Vc2 -> pi

objectpi

cj

cn

c1

c2

Fig. 14. Viewpoint and camera position

From the perspective of fidelity, however, the dis-
played image quality is not satisfying:

1) Due to the rough quantization of patch normals,
the best camerac∗ for a patch varies from patch to
patch even if they are neighboring. Thus, textures
on neighboring patches are often extracted from
those images captured by different cameras (i.e.
viewpoints), which introduces jitters in displayed
images.

2) Since the texture mapping is conducted patch by
patch and their normals are not accurate, textures
of neighboring patches may not be smoothly con-
nected. This introduces jitters at patch boundaries
in displayed images.

To overcome these quality problems, we developed
a viewpoint dependent vertex-based texture mapping
algorithm. In this algorithm, the color (i.e. RGB value)
of each patch vertex is computed taking into account the
viewpoint of a viewer, and then the texture of each patch
is generated by interpolating the color values of its three
vertices.

B. Viewpoint Dependent Vertex-Based Texture Mapping
Algorithm

(1) Definitions
First of all, we define words and symbols as follows
(Figure 14), where bold face symbols denote 3D posi-
tion/direction vectors:



9

cj

p
i p

k
i
i
i
i
i
i
i
i

i

i

i
i
i
i
i
i

i
i
i
i
i

i
i
i
i

i
i i

k
k

k
k
k
k
k

k k

k
k

k
k k

jk k
i
i
i
i
i
i
i

i
i
ii
i

depth

Fig. 15. Depth buffer

Type (1) Type (2) Type (3)

Type (4) Type (5)

Fig. 16. Relations between patches

• a group of cameras:C = {c1, c2, . . . , cn}
• a viewpoint for visualization:eye
• a set of surface patches:P = {p1, p2, . . . , pm}
• outward normal vector of patchpi: npi

• a viewing direction fromeyetoward the centroid of
pi: veye→pi

• a viewing direction fromcj toward the centroid of
pi: vcj→pi

• vertices ofpi: vk
pi

(k = 1, 2, 3)
• vertex visible fromcj (defined later):vk

pi,cj

• RGB values ofvk
pi,cj

(defined later):I(vk
pi,cj

)
• a depth buffer ofcj : Bcj

Geometrically this buffer is the same as the image
plane of cameracj . Each pixel ofBcj

records such
patch ID that is nearest fromcj as well as the
distance to that patch fromcj (Figure 15). When a
vertex of a patch is mapped onto a pixel, its vertex
ID is also recorded in that pixel.

(2) Visible Vertex from Camera cj

The vertex visible fromcj , vk
pi,cj

, is defined as follows.

1) The face of patchpi can be observed from camera
cj , if the following condition is satisfied.

npi
· vcj→pi

< 0 (4)

2) vk
pi

is not occluded by any other patches.

Then, we can determinevk
pi,cj

by the following process:

1) First, project all the patches that satisfy equation
(4) onto the depth bufferBcj

.
2) Then, check the visibility of each vertex using

the buffer. Figure 16 illustrates possible spatial
configurations between a pair of patches: all the

vertices in type (1) and (2) are visible, while in
type (5) three vertices of the occluded patch are
not visible. In type (3) and (4), only some vertices
are visible.

RGB valuesI(vk
pi,cj

) of the visible vertexvk
pi,cj

are
computed by

I(vk
pi,cj

) = Icj
(v̂pi,cj

), (5)

whereIcj
(v) shows RGB values of pixelv on the image

captured by cameracj , and v̂k
pi,cj

denotes the pixel
position onto which the vertexvk

pi,cj
is mapped by the

imaging process of cameracj .

(3) Algorithm
1) Compute RGB values of all vertices visible from

each camera inC = {c1, c2, . . . , cn}.
2) Specify the viewpointeye.
3) For each surface patchpi ∈ P , do 4 to 9.
4) If veye→pi

· npi
< 0, then do 5 to 9.

5) Compute weightwcj
= (vcj→pi

·veye→pi
)m, where

m is a weighting factor to be specified a priori.
6) For each vertexvk

pi
(k = 1, 2, 3) of patchpi, do

7 to 8.
7) Compute the normalized weight forvk

pi
by

w̄k
cj

=
wk

cj∑
l w

k
cl

. (6)

Here, if vk
pi

is visible from cameracj , thenwk
cj

=
wcj

, elsewk
cj

= 0.
8) Compute the RGB valuesI(vk

pi
) of vk

pi
by

I(vk
pi

) =
n∑

j=1

w̄k
cj

I(vk
pi,cj

) (7)

9) Generate the texture of patchpi by linearly inter-
polating RGB values of its vertices. To be more
precise, depending on the number of vertices with
non-zero RGB values, the following processing is
conducted:
• 3 vertices: Generate RGB values at each point

on the patch by linearly interpolating the RGB
values of 3 vertices .

• 2 vertices: Compute mean values of the RGB
values of the 2 vertices, which is regarded as
those of the other vertex. Then apply the linear
interpolation on the patch.

• 1 vertex: Paint the patch by the RGB values
of the vertex.

• no vertex: Texture of the patch is not gener-
ated: painted by black for example.

By the above process, an image representing an arbi-
trary view (i.e fromeye) of the 3D object is generated.



10

450 cm

400 cm
250 cm

#1 #5

#8

#7

#6

#12#1

#11#11

#10

#9

#2

#3

#4

Fig. 17. Camera Setting

VDVBM–1

VDVBM–2

VIPBM

Original sequence

Frame # 103 Cam 5 Cam 11

Fig. 18. Cropped images generated by VDVBM–1, VDVBM–2,
VIPBM, and original sequence

C. Performance Evaluation

To evaluate the performance of the proposed view-
point dependent vertex-based method (VDVBM), we
first compare it with the viewpoint independent patch-
based method (VIPBM) qualitatively. Figure 18 com-
pares those images generated by VDVBM-1, VDVBM-
2 and VIPBM with an original video image. Note that
to evaluate the performance of VDVBM, we employed
two methods: VDVBM–1 generates images including
real images captured by cameracj = eye itself (i.e. cam
5 and 11 in Figure 18, respectively), while VDVBM–2
excludes such real images captured by cameracj . We can
observe that VIPBM introduces many jitters in images,
which are considerably reduced by VDVBM.

Then, we conducted quantitative performance evalua-
tions. That is, we calculate RGB root-mean-square (rms)
errors between a real image captured by cameracj =
eyeand its corresponding images generated by VIPBM,
VDVBM–1, and VDVBM–2, respectively.

The experiments were conducted under the following
settings:
• camera configuration: Figure 17
• image size: 640×480[pixel] 24 bit RGB color
• viewpoint (eye): camera 5
• weighting factor in VDVBM:m = 5
Figure 20 illustrates the experimental results, where

rms errors for frame 95 to 145 are computed. This
figure shows that VDVBM performs better than VIPBM.
The superiority of VDVBM and its high fidelity image
generation capability can be easily observed in Figure
19, where real and generated images for frame 110 and
120 are illustrated.

Next, we tested how we can improve the performance
of VDVBM by increasing the spatial resolution of the 3D
object surface patch data. Figure 21 shows the method
of subdividing a patch into three (S3) and six (S6) sub-
patches to increase the spatial resolution.

We examine the average side length of a projected
patch on the image plane of each camera by projecting
original and subdivided 3D surface patches onto the
image plane. Figure 22 shows the mean side length of
the patches projected on the image plane of each camera.
Note that since camera 9 is located closer to the 3D
object (see Figure 17), object images captured by it
become larger than those by the other cameras, which
caused bumps (i.e. larger side length in pixel) in the
graphs in Figure 22.

We can observe that the spatial resolution of S6 is
approximately the same as that of an observed image
(i.e. 1 pixel). That is, S6 attains the finest resolution,
which physically represents about 5mm on the object
surface. To put this another way, we can increase the
spatial resolution up to six sub-divisions, which improves
the quality of images generated by VDVBM.

To quantitatively evaluate the quality achieved by us-
ing subdivided patches, we calculated root-mean-square
errors between real images and images generated by
VDVBM-1 with the original patches, S3, and S6, re-
spectively (Figure 23).

Figure 23 shows that subdividing patches does not
numerically reduce the errors. The reason of this ob-
servation is as follows. Figure 24 shows the spatial
distribution of the color difference between a real im-
age and a generated image, from which we can see
that large errors arise around the object contour and
texture edges. These errors are difficult to reduce by



11

VDVBM–1

VDVBM–2

VIPBM

Original sequence
Frame # 110 Frame # 120

Fig. 19. Sample images of 3D video generated by VDVBM–1, VDVBM–2, and VIPBM fromeye= cam 5 in Figure 17.

35


40


45


50


55


60


65


70


75


95
 100
 105
 110
 115
 120
 125
 130
 135
 140
 145


R
o
o
t-

m
e
a
n
-s

q
u
a
re

 e
rr

o
r


Frame number


VDVBM-1
VDVBM-2

VIPBM

Fig. 20. Root-mean-square error of RGB value (1)

subdividing patches because they come from motion
blur, the misalignment of the camera calibration, or the
asynchronization by the soft trigger image capturing.
Fidelity of images generated with subdivided patches,
however, is improved in smooth object surface areas
(Figure 25). Thus, subdividing patches is effective from

An original patch A patch subdivided A patch subdivided

into three (S3) into six (S6)

Fig. 21. Subdivision of a 3D surface patch

a fidelity point of view.
Note that the zigzag patterns in Figures 20 and 23 were

caused due to the imperfectness of the synchronization
of the image capturing process. Since we used the soft
trigger mode to capture multi-view video data in this
experiment, the image capture timing varied slightly PC
by PC. This timing deviation sometimes increased the
inaccuracy of the reconstructed 3D shape, because the
dancer moved her hands rather fast.

Finally, we show examples generated by VDVBM–
1 with subdivided patches (S6) viewed from camera 5,
11, and an intermediate point between them (Figure 26).



12

1

1.5

2

2.5

3

3.5

4

4.5

5

cam1 cam2 cam3 cam4 cam5 cam6 cam7 cam8 cam9 cam10 cam11 cam12

p
ix

el

camera

’Original’
’Subdivided into 3’
’Subdivided into 6’

Fig. 22. Mean side length (in pixel) of patches projected on the
image plane of each camera.

31

32

33

34

35

36

37

38

95 100 105 110 115 120 125 130 135 140 145

R
o

o
t-

m
ea

n
-s

q
u

ar
e 

er
ro

r

Frame number

’Original’
’Subdivided into 3’
’Subdivided into 6’

Fig. 23. Root-mean-square errors of RGB value (2)

Figure 26 shows that the images generated by VDVBM
look almost real even when they are viewed from the
intermediate point of the cameras.

For rendering 3D video data like Figure 26, we used
a popular PC: (CPU: Xeon 2.2GHz, Memory: 1GB,
Graphics Processor: GeForce 4 Ti 4600, Graphics li-
brary: DirectX 9.0b) and used the following two stage
process:

1) First, compile a temporal sequence of recon-
structed 3D shape data and multi-view video into
a temporal sequence of vertex lists, where multi-
view RGB values are associated with each vertex.
It took about 2.8 sec to generate a vertex list for
a frame of 3D video.

2) Then, with the vertex list sequence, arbitrary VGA
views of the 3D video sequence can be rendered
at 6.7 msec/frame. Thus, we can realize real-time
interactive browsing of 3D video with a PC. Note
also that since we can render a pair of stereo
images in real-time (i.e. 14 msec/stereo-pair), we
can enjoy pop-up 3D image interactively with a
3D display monitor.

V. CONCLUSION

3D video records an object’s full 3D shape, motion,
and surface texture. In this paper, we first proposed a

Fig. 24. Color difference between a real image and a generated
image (frame #106)

Original Subdivided (S6)

Fig. 25. Example images rendered with original and subdivided
patches (frame #106)

real-time parallel pipeline volume intersection method
on a PC cluster: the plane-based volume intersection
method, its acceleration algorithm, and the parallel
pipeline implementation. The quantitative performance
evaluations demonstrated that the acceleration and par-
allelizing algorithms we proposed are very efficient and
enabled us to reconstruct dynamic full 3D shape over
10 volume per sec at the a 2cm× 2cm× 2cm voxel
resolution.

In the latter half of the paper, we proposed a high
fidelity texture mapping method. The qualitative and
quantitative performance evaluations demonstrated that
the proposed texture mapping method can produce object
images from arbitrary viewpoints in almost the same
quality as real video data.

As listed in the introduction, to make 3D video usable
in everyday life, we still have to develop methods of

• higher speed and more accurate 3D behavior recon-
struction

• 3D shape acquisition in a wide spread area and for
multiple people

• more natural image generation
• effective data compression
• editing 3D video for artistic image contents.

This work was supported by the grant-in-aid for sci-
entific research (A) 13308017. We are grateful to Real



13

Cam 5 Intermediate Cam 11
between cams 5 and 11

Fig. 26. Visualized 3D video with subdivided patches (frame#103)

World Computing Partnership, Japan for allowing us to
use their multi-viewpoint video data.

REFERENCES

[1] X. Wu and T. Matsuyama: Real-Time Active 3D Shape Recon-
struction for 3D Video,Proc. of 3rd International Symposium on
Image and Signal Processing and Analysis, pp.186–191, 2003.

[2] T. Matsuyama and T. Takai: Generation, Visualization, and Edit-
ing of 3D Video,Proc. of symposium on 3D Data Processing
Visualization and Transmission, pp.234–245, 2002.

[3] S. Moezzi, L. Tai, and P. Gerard: Virtual View Generation for
3D Digital Video, IEEE Multimedia, pp.18–26, 1997.

[4] G. Cheung and T. Kanade: A Real Time System for Robust
3D Voxel Reconstruction of Human Motions,Proc. of CVPR,
pp.714–720, 2000.

[5] T. Kanade, P. Rander, S. Vedula, and H. Saito: Virtualized
Reality: Digitizing a 3D Time-Varying Event as is and in Real
Time, in Mixed Reality (Y.Ohta and H.Tamura eds.), pp.41–57,
Ohmsha, 1999.

[6] T. Wada, X. Wu, S. Tokai, T. Matsuyama: Homography Based
Parallel Volume Intersection: Toward Real-Time Reconstruction
Using Active Camera:Proc. of Computer Architectures for
Machine Perception, pp.331–339, 2000.

[7] E. Borovikov and L. Davis: A Distributed System for Real-
Time Volume Reconstruction,Proc. of Computer Architectures
for Machine Perception, pp.183–189, 2000.

[8] T. Kanade, A. Yoshida, K. Oda, H. Kano, and M. Tanaka: A
Stereo Machine for Video-Rate Dense Depth MApping and
its New Applications,Proc. of Computer Vision and Pattern
Recognition, pp.196–202, 1996.

[9] J. Mulligan, V. Isler, and K. Daniilidis: Trinocular Stereo: A
Real-Time Algorithm and its Evaluation,International Journal
of Computer Vision, Vol.47, No.1/2/3, pp.51–61, 2002.

[10] H. Hirschmuller, P. R. Innocent, and J. Garibaldi: Real-Time
Correlation-Based Stereo Vision with Reduced Border Errors,
International Journal of Computer Vision, Vol.47, No.1/2/3,
pp.229–246, 2002.

[11] T. Naemura, J. Tago, and H. Harashima: Real-time video-based
modeling and rendering of 3D scenes,IEEE Computer Graphics
and Applications, Vol.22, pp.66–73, 2002.

[12] P. Kauff and O. Schreer: An immersive 3d video-conferencing
system using shared virtual team user environments,Proc. of
ACM Conf. on Collaborative Virtual Environments, pp.105–112,
2002.

[13] W. Matusik, C. Buehler, R. Raskar, S. Gortler, and L. MacMil-
lan: Image-Based Visual Hulls,Proc. of SIGGRAPH, pp.369–
374, 2000.

[14] H. Baker, D. Tanguay, I. Sobel, D. Gelb, M. Gross, W. Culbert-
son, and T. Malzbender: The coliseum immersive teleconfer-
encing system,Proc. of International Workshop on Immersive
Telepresence, 2002.

[15] M. Turk and G. Robertson: Perceptual User Interfaces,Com-
munications of ACM, VOl.43, No.3, pp.33–34, 2000.

[16] T. Matsuyama and N. Ukita: Real-Time Multi-Target Tracking
by a Cooperative Distributed Vision System,Proc. of IEEE,
Vol.90, No.7, pp.1136–1150, 2002.

[17] T. Matsuyama and R. Yamashita: Requirements for
Standardization of 3D Video,ISO/IEC JTC1/SC29/WG11,
MPEG2002/M8107, 2002.

[18] Y. Kenmochi, K. Kotani, A. Imiya: Marching Cubes Method
with Connectivity Consideration:PRMU–98–218, pp.197–204,
1999 (in Japanese).

[19] S. Nobuhara and T. Matsuyama: Dynamic 3D Shape from
Multi-Viewpoint Images Using Deformable Mesh Model,Proc.
of 3rd International Symposium on Image and Signal Process-
ing and Analysis, pp.192–197, 2003.

[20] H. Tezuka, A. Hori, Y. Ishikawa, and M. Sato: PM: An
Operating System Coordinated High Performance Communi-
cation Library,High-Performance Computing and Networking
(P. Sloot and B. Hertzberger, eds.),Lecture Notes in Computer
Science, Vol.1225, pp.708–717. Springer-Verlag, 1997.

[21] T. Wada and T. Matsuyama: Appearance Sphere:Background
Model for Pan-Tilt- Zoom Camera,Proc. of 13th ICPR, pp.A-
718–A-722, 1996.

[22] T. Matsuyama: Cooperative Distributed Vision – Dynamic In-
tegration of Visual Perception, Action, and Communication –,
Proc. of Image Understanding Workshop, pp. 365–384, 1998

[23] M. Potmesil. Generating Octree Models of 3D Objects from
their Silhouettes in a Sequence of Images.Computer Vi-
sion,Graphics, and Image Processing, 40: pp.1–29, 1987.

[24] W. N. Martin and J. K. Aggarwal. Volumetric Description of
Objects from Multiple Views.IEEE Transactions on Pattern
Analysis and Machine Intelligence, 5(2): pp.150–158, 1987.

[25] A. Laurentini: The Visual Hull Concept for Silhouette Based
Image UnderstandingIEEE Transactions on Pattern Analysis
and Machine Intelligence, 16(2): pp.150–162, 1994.

[26] A. Laurentini: How Far 3D Shapes can be Understood from
2D Silhouettes,IEEE Transactions on Pattern Analysis and
Machine Intelligence, 17(2): pp.188–195, 1995.

[27] P. Srivasan, P. Liang, and S. Hackwood: Computational Geo-
metric Methods in Volumetric Intersections for 3D Reconstruc-
tion, Pattern Recognition, 23(8): pp.843–857, 1990.

[28] R. Szeliski. Rapid Octree Construction from Image Sequences,
CVGIP: Image Understanding, 58(1): pp.23–32, 1993.

[29] K. N. Kutulakos and S. M. Seitz. A theory of shape by space
carving, IEEE International Conference on Computer Vision,
pp.307–314, 1999.

[30] J. Semple and G. Kneebone:Algebraic Projective Geometry,
Oxford Science Publication, 1952.


