
Real-time Cooperative Multi-target Tracking

by Communicating Active Vision Agents

Norimichi Ukita a,1 Takashi Matsuyama a

aYoshidahonmachi, Sakyo, Kyoto, Japan 606-8501.

Abstract

This paper presents a real-time cooperative multi-target tracking system. The sys-
tem consists of a group of Active Vision Agents (AVAs, in short) representing a
logical model of a network-connected computer with an active camera. All AVAs
track their target objects cooperatively by interacting dynamically with each other.
As a result, the system as a whole can track multiple moving objects simultaneously
under complicated dynamic situations in the real world. To implement real-time
cooperation among AVAs, we designed a three-layered interaction architecture. In
each layer, parallel processes mutually exchange a variety of information for effective
cooperation. We employed the dynamic memory architecture to achieve real-time
information exchange. Experimental results demonstrated that AVAs track their
target objects cooperatively in real-time while adaptively changing their roles.

Key words: Multi-target Tracking, Tracking using Multiple Active Camera,
Cooperative Distributed Tracking, Active Vision Agent

1 Introduction

Object tracking technology allows the development of various real-world vision
systems such as visual surveillance and monitoring systems[2], ITS (Intelligent
Transport Systems)[3], and navigation of mobile robots[17].

To apply object tracking to these real-world systems, the object tracking
method must be able to cope with complicated situations and conduct process-
ing reactively in real time. However, most object tracking methods proposed

Email addresses: ukita@is.naist.jp (Norimichi Ukita), tm@i.kyoto-u.ac.jp
(Takashi Matsuyama).
1 Now working at Graduate School of Information Science, Nara Institute of Science
and Technology, Japan.

Preprint submitted to Elsevier Science 19 July 2004

to date, have some restrictions with regard to their functions and assump-
tions about the environment. For example, there have been a large number of
studies of single-target tracking:

• Using a single fixed/active camera: [4]/[5].
• Using multiple fixed/active cameras: [6]/[1].

As a multi-target tracking system is required for application of the system
to general purposes, researchers have recently concentrated on multi-target
tracking and the number of studies in this area is increasing:

• Using a single fixed camera: [7,8,3]
• Using multiple fixed cameras: [9,15,11,21]

However, there are few multi-target tracking systems that use multiple cam-
eras. In particular, there have been few reports concerning with multi-target
tracking systems that employ multiple active cameras.

The limitations with regard to resources and functions (i.e., single-target,
single-camera and fixed-camera tracking) reduce the effectiveness and gen-
erality of object tracking for real-world systems. In this paper, therefore, we
propose a flexible multi-target tracking system with multiple active cameras,
which can be applied to various real-world systems and can cope with dynamic
complicated situations in the real world. In this system, pan, tilt and zoom pa-
rameters of multiple cameras have to be controlled to implement the following
functions simultaneously: 1) wide-area observation for continuously tracking
multiple target objects; and 2) local-area scrutiny for acquisition of detailed
information (i.e., high-resolution images of the target objects). As these two
principles for controlling cameras are opposed to each other, implementing
these camera controls simultaneously in real time is an extremely difficult and
complex problem. Thus, it is impossible to solve this problem with previous
tracking systems, especially in cases in which a tracking system possesses a
large number of active cameras. In [14], for example, pan-tilt-zoom cameras
were employed for tracking target objects. The system used, however, at most
two (non-active) panoramic cameras and two pan-tilt-zoom cameras. In addi-
tion, no elaborate strategies for dynamic role assignments among the cameras
(i.e., which camera gazes at which object or where) were realized.

We solve the above problem (i.e., two opposed principles for controlling many
cameras in real time) with cooperative communication among cameras. Our
system consists of Active Vision Agents (AVAs), where an AVA is a logical
model of an active vision system that is capable of communicating with each
other through the network. Our objective is to realize a tracking system that
can 1) change its behavior in an adaptive manner depending on the situation
and the given task, and 2) keep tracking focused on the target objects.

 Hub

PC

Object

Active camera
(FV-PTZ camera)

Open network

{
{

Asynchronized
capturing,
Overlapping
adjacent
visual fields

Autonomous
processing

Fig. 1. System organization.

For real-time object tracking by multiple AVAs, we have solved the following
problems:

• The design of an active camera for dynamic object detection[1].
• Realization of real-time object tracking with an active camera[20].

In this paper, we focus on how to realize real-time cooperation among AVAs.

To implement real-time cooperation among AVAs, we propose a three-layered
interaction architecture. In each layer, parallel processes exchange different
kinds of object information for effective cooperation. For real-time information
exchange and processing, we employed the dynamic memory architecture[20].
The dynamic interaction in each layer allows the total system to track multiple
moving objects under complicated dynamic situations in the real world.

Experimental results demonstrated that the proposed real-time cooperation
method enables a system with ten AVAs to: 1) successfully acquire dynamic
object information and 2) adaptively assign an appropriate role to each AVA.

1.1 System Organization

Our system consists of a group of network-connected computers, each of which
possesses an active camera, as illustrated in Fig. 1. A group of spatially dis-
tributed active cameras enables continuous wide-area observation as well as
detailed measurement of 3D object information. We imposed the following
constraints regarding the camera configuration on the system:

• Visual fields of the cameras overlap with each other to keep tracking a target
in the observation field without a break. That is, in our system, the area of

observation is determined by the number of cameras and their visual fields.
• In addition, all the observation spaces can be observed by at least two

cameras because every space must be observed by multiple cameras to re-
construct 3D information of an object.

By employing multiple pan-tilt-zoom cameras, we designed a system that can
not only simply track the trajectories of target objects but also acquire their
high-resolution images taken from various directions 2 .

With the above architecture and functions, each AVA works autonomously
while maintaining its own intrinsic dynamics and cooperates with the other
AVAs by exchanging information through the network. The network is not
a special closed network (e.g., high-speed PC cluster) but a common open
network.

Each AVA captures images asynchronously because it works autonomously
maintaining its own dynamics. That is, the system is not in need of any syn-
chronization mechanism (e.g., sync-pulse generator and gen-lockable camera).
In [12] and [13], on the other hand, fully synchronized multi-camera systems,
with all cameras synchronized by a common sync-generator, were proposed.
However, all cameras should be controlled independently and observe the scene
asynchronously because each camera must keep its intrinsic dynamics to adapt
itself reactively to dynamic situations in the scene.

To allow each AVA to compare its observed information with that of another
AVA as time-series data, we suppose that the internal clocks of all AVAs are
synchronized. For example, by comparing time stamps of images captured by
different AVAs with each other, the system can identify images taken at almost
same time.

1.2 Architecture of AVA and its Functions

Each AVA possesses a single Fixed-Viewpoint Pan-Tilt-Zoom (FV-PTZ) cam-
era[1]: its projection center remains fixed irrespective of any camera rotation
and zooming. With a pan-tilt camera, it is difficult to detect arbitrary ob-
jects from an observed image. In [14], a moving object is detected by sim-
ply analyzing flows estimated in consecutive images. The system described in
[5] can detect moving objects by subtracting consecutive images even if the
camera is rotated during the observation. The implementation of background
image compensation allows the system to apply motion detection techniques

2 The high-resolution images of an object are very useful for application of the
system to face and gesture recognition, volume reconstruction, and some other vision
algorithms.

Anomalous regions

Generated image

Parameters
Pan, Tilt, Zoom

Panoramic background image

Camera actionInput image

2.

3.

4.

1.

Fig. 2. Object detection and tracking using an FV-PTZ camera.

for the fixed camera to images taken with different camera rotations. With
these methods, however, stationary objects cannot be detected without other
methods that require the object information given in advance, such as color
detection and face recognition.

In our system, on the other hand, an AVA can easily detect and track an
arbitrary moving object as illustrated in Fig. 2:

(1) Generate a wide panoramic image of the background scene in advance.
With the FV-PTZ camera, a wide panoramic image can be generated eas-
ily by mosaicing multiple images observed by changing pan, tilt, and zoom
parameters. 1) The pan and tilt parameters are controlled so that the ob-
served images reprojected onto a virtual plane can make the panoramic
image without any aperture between the reprojected images. 2) Since
the resolution of the panoramic background image is determined by the
zooming factor, the zoom parameter is controlled such that the resolution
is sufficient for detecting object regions by background subtraction.

(2) Extract a window image from the panoramic image according to the
current pan-tilt-zoom parameters and regard it as the background image.
A direct mapping exists between the position in the panoramic image and
pan-tilt-zoom parameters of the camera.

(3) Compute differences between the generated background image and the
observed image 3 .

(4) If anomalous regions are detected in the difference image, select one and
control the camera parameters to track the selected target 4 . Otherwise,
move the camera along the predefined trajectory to search for objects.

(5) Points 2, 3, and 4 are repeated while the AVA is working.

In general, there are two kinds of agents:

3 To utilize this object detection method with varying background scenes, a robust
background subtraction (see [18] [19], for example) is required.
4 How to control the camera parameters will be described in Section 3.3.2.

Software agent is a virtual agent without any physical body in the real
world. Each agent corresponds to logical data (e.g., information of a detected
object) in the system (see [16], for example).

Real-world agent is an agent with its own physical body (e.g., an active
camera and a mobile robot) that can be controlled by itself. There is a one-
to-one correspondence between an agent in the system and the body in the
real world (see [17], for example).

We believe that an intelligent system has to possess its own body to interact
with the real world. Therefore, we define an agent to correspond to each phys-
ical body in the real world. That is, we call 1) a real-world agent simply an
agent and 2) an agent without a body a software agent.

Although several object tracking systems with multiple cameras and multi-
agent systems have been reported, most employ only software agents[10,11].
In these systems, 1) a software agent is defined to correspond to the infor-
mation of each object detected by the system and 2) all cameras are shared
by software agents, each of which manages the information of each detected
object. These definitions force each software agent to examine the object in-
formation detected by all cameras for tracking its target. In addition to this
technological problem, the above definitions have an essential limitation: mul-
tiple software agents may control a camera inconsistently in tracking their
targets (i.e., controlling pan, tilt, and zoom parameters), if the system em-
ploys active cameras. This makes it difficult for a camera to gaze at multiple
objects simultaneously. This limitation prevents the realization of the intended
system.

In our system, on the other hand, an agent (i.e., AVA) corresponds to a single
active camera. That is, each agent monopolizes its own camera. Therefore, all
AVAs can control their own cameras to gaze at their targets. Our definition of
an agent has the advantage that it has a one-to-one correspondence between
the agent and camera.

In addition, in our system, the information of each target should be managed
intensively to 1) record the information of each object and 2) compare the
information of different objects with each other. To realize these functions, a
software agent, which has a one-to-one correspondence with an object, gathers
its target information detected by AVAs. In our system, AVAs that track the
same object form a group called an agency, and a software agent corresponding
to each agency works as the entity of the agency (described in detail later).

Agency2

Agency1

Object

Object

AVA2 AVA1 AVA2

AVA3AVA4

image camera

Detect!

Navigated!

Navigated! Cooperating!

Cooperating! Cooperating!

Agency

Object1

Object2

target
Change

AVA1 AVA2

AVA3AVA4

AVA1

AVA4 AVA3

(a) Gaze navigation (b) Cooperative gazing (c) Adaptive tracking

Fig. 3. Basic scheme for cooperative tracking. A mesh region denotes an agency,
and AVAs within the same mesh region belong to the same agency.

1.3 Basic Scheme for Cooperative Tracking

In our system, many AVAs are embedded in the real world and observe a wide
area. With these AVAs, we realize a multi-AVA system that cooperatively
detects and tracks multiple targets. The following are the tasks of the system:

(1) Initially, each AVA searches independently for objects that come into the
observation scene.

(2) When an AVA detects an object, the AVA examines whether or not it
should observe the detected object. If the object should be observed, the
AVA regards it as a target and navigates the gazes of other AVAs toward
the target (Fig. 3 (a)).

(3) An agency is a group of AVAs that cooperatively gaze at the same target
form what we call an Agency (Fig. 3 (b)). In our system, there is a one-
to-one correspondence between an agency and a target in the scene.

(4) Depending on target locations in the scene, each AVA changes its target
dynamically (Fig. 3 (c)).

(5) When the target leaves the scene, an AVA decides whether it should
search again for objects or track another target that is tracked by other
AVAs depending on the situation.

To realize the above cooperative tracking, it is necessary to solve the following
problems:

Multi-target identification: To gaze at each target, the system has to dis-
tinguish multiple objects in the scene.

Real-time and reactive processing: To adapt itself to dynamic changes
in the scene (e.g., object motion), the system has to execute processing in
real time and cope with variations in the scene reactively.

Adaptive resource allocation: it is necessary to implement a two-phase
dynamic resource (i.e., AVA) allocation:

(1) To perform both object search and tracking simultaneously, the system
has to preserve AVAs that search for new objects even while tracking
targets.

(2) To track each moving target persistently, the system has to adaptively
determine which AVAs should track which targets.

In what follows, we address how these problems can be solved by real-time
cooperative communications among AVAs and agencies.

2 Task Specification

The tracking system needs to search for objects in the scene. This role is
called Search4. Once a target is detected, the system gazes at it to obtain
its information. This role is called Tracking. Hereafter, slanted search and
tracking denote the roles of the AVA. In addition, the system is required to
gaze selectively at the object whose information is necessary for the given task.

In our system, we specify the task for the system by the following three pa-
rameters:

Task-constraint represents the number of AVAs that execute search and
tracking.

Object-priority specifies the priority of each object.
Utility-function specifies the fitness of an AVA for each task.

2.1 Task-constraint

The number of AVAs that execute search and tracking is adjusted in accor-
dance with the given task-constraint. An AVA that searches for a new (un-
detected) object is called a Freelancer-AVA, and observes a wide area au-
tonomously. AVAs that cooperatively track the same target form an agency.
An AVA belonging to an agency is called a Member-AVA.

We can realize various capabilities of the system in terms of the combination
of search and tracking as shown in Fig. 4. We call this graph a System State
Graph. The horizontal and vertical axes indicate the rates of AVA that perform
search and tracking, respectively. We call values of the horizontal and vertical
axes Search-level and Tracking-level.

0 Search

Tracking

1

1

TC

S C

L

C

P

S P

TP

0 Search

Tracking

1

1

TC

SC

L

C

1

L 2

L 3

(a) Current state, Task-constraint (b) Three types of system state

Fig. 4. System state graph (system state representation with search and tracking).

Definition 1 (Search-level and Tracking-level)

Search-level =
The number of AVAs searching for an object

The total number of AVAs
(1)

Tracking-level =
The number of AVAs tracking targets

The total number of AVAs
(2)

We define the task-constraint and the current state of the system on the system
state graph.

Definition 2 (Current state P (SP , TP)) This parameter (P in Fig. 4 (a))
represents the search-level (SP) and the tracking-level (TP) at the present time.
The range of the current state P is on the line L in Fig. 4 (a). That is,
(SP + TP) is always 1.

Definition 3 (Task-constraint C(SC , TC)) This parameter (C in Fig. 4
(a)) represents the minimum search-level (SC) and tracking-level (TC), where
0 ≤ SC ≤ 1, 0 ≤ TC ≤ 1, and 0 ≤ (SC + TC) ≤ 1. That is, a
combination of SC and TC is within a triangle determined by the horizontal
and vertical axes and the line L in Fig. 4. The system has to keep SC and
TC while working. Therefore, the system adjusts its current state so that its
current search-level and tracking-level (i.e., (SP , TP)) are not less than those
of the task-constraint (i.e., (SC , TC)). The task-constraint is given by users as
a pair of constants (i.e., SC and TC) depending on the task of the system.

The following are the three states of the system determined by the relations
between the task-constraint and the current state.

Deficiency of search-level: TC < TP and SC > SP . That is, the current
state P is on L1 in Fig. 4 (b).

Task satisfaction: TC ≤ TP and SC ≤ SP . That is, the current state P is
on L2 in Fig. 4 (b).

Deficiency of tracking-level: TC > TP and SC < SP . That is, the current
state P is on L3 in Fig. 4 (b).

If the current state of the system does not satisfy the task-constraint, each
AVA changes its own role dynamically between search and tracking to adjust
the search-level and tracking level to the task-constraint.

Thus, the system can realize gradual variations in its behavior to adapt itself
to versatile tasks by representing its behavior with numerical parameters.

2.2 Object-priority

In our system, object-priority is given to each object category that can be
distinguished by the system.

Definition 4 (Object-priority IP) Let IP denote the object-priority of the
target of agencyP , where 0 ≤ IP ≤ 1. The number of member-AVAs in agencyP

(denoted by MP) is determined by the object-priorities of the targets:

MP =(The total number of member AVAs) × IP

S
, (3)

S =
NA∑
i=1

Ii, (4)

where NA is the total number of existing agencies. That is, the number of the
member-AVAs is proportional to the object-priority of the target.

2.3 Utility-function

In our system, each AVA has to decide its role according to the given task-
constraint and object-priority. These two parameters confer restrictions no
the system regarding the numbers of AVAs that execute search and tracking.
Under this restriction, however, each AVA can freely change its role taking
into account the utility-function representing which AVA is suitable for which
role.

The utility-function is represented by the total sum of the following search-
value and tracking-value:

• The search-value of a freelancer-AVA is determined by the fitness of
each freelancer-AVA for search.

• The tracking-value of an agency is the sum of all tracking-values of
member-AVAs belonging to the agency.
· The tracking-value of a member-AVA is determined by the fitness of

each member-AVA for tracking.

The value of the utility-function is defined as the total sum of the search-values
of all freelancer-AVAs and the tracking-values of all agencies. For example,
when AVA1 is a freelancer and AVA2 and AVA3 are member-AVAs, the sum
of the search-value of AVA1 and the tracking-values of AVA2 and AVA3 is
the value of the utility-function. Each AVA changes its role dynamically to
increase the utility-function under the restriction of the task-constraint and
object-priority. The above values can be designed to adapt themselves to the
task of the system by the users. We give an example in Section 5.2.

3 Dynamic Interaction for Cooperative Tracking

In our system, parallel processes work cooperatively by interacting dynami-
cally with each other. As a result, the system as a whole works as a tracking
system. By composing the system as a group of multiple processes, we can rep-
resent various complex behaviors of the total system through the interaction
between processes. Therefore, the design of the whole system can be reduced
to the design of each process. Furthermore, the states and these transitions
of the system increase enormously by combining with each other. We believe
that this property allows the system to cope with complicated situations in
the real world in contrast to centralized processing systems (e.g., [15]).

3.1 Layers in the System

For the system to engage in multi-target tracking, object identification is signif-
icant. We, therefore, classify the system into three layers (namely, intra-AVA,
intra-agency and inter-agency layers) depending on the types of object infor-
mation employed for identification. Each layer corresponds to elements in the
system as follows (Fig. 5):

Intra-AVA layer (the bottom layer): An AVA.
Intra-agency layer (the middle layer): An agency.
Inter-agency layer (the top layer): The total system.

In each layer, object identification according to the type of exchanged infor-
mation is established. Depending on whether or not object identification is
successful, a dynamic interaction protocol for cooperative object tracking is

Perception Module Dynamic Memory

Communication
Module

Action Module

MemberAVA2

MemberAVA3

MemberAVA1

Agency2

Agency3

Inter-Agency Layer

Intra-Agency Layer

Intra-AVA Layer

Agency Information

Perception Data

Camera Data Object Data

Dynamic
Memory

Agency1

Agency Manager

Object Information

AVA

FreelancerAVA1

FreelancerAVA2

Freelancer-AVAs

Object Information

Fig. 5. Three layers in the system (bottom: intra-AVA, middle: intra-agency, top:
inter-agency layers).

activated.

In what follows, we 1) first introduce the general concept and functions for
real-time interaction among processes, and 2) address the interactions in each
layer.

3.2 Dynamic Memory Architecture for Real-time Asynchronous Interaction

For real-time cooperation among parallel processes, they have to asynchronously
exchange information maintained by themselves with each other. To support
such asynchronous interactions, Matsuyama et al.[20] proposed a novel dy-
namic system architecture named the Dynamic Memory Architecture, where
parallel processes share what they call the Dynamic Memory. The dynamic
memory architecture maintains not only temporal histories of state variables
such as camera pan-tilt angles and target object locations but also their pre-
dicted values in the future. The dynamic memory supports asynchronous dy-
namic interactions (i.e., data exchange between the processes) without wast-
ing time for synchronization. This no-wait asynchronous interaction capability
greatly facilitates the implementation of real-time reactive systems such as a
moving object tracking system.

value

time

interpolated

predicted
v (T1)

T1 NOW 3

t0 t1 t2 t3 t 4 t 5 t 6 t7

TT2

Fig. 6. Representation of a time varying variable in the dynamic memory.

In the dynamic memory architecture, multiple parallel processes share the
dynamic memory. Each process writes its state variable such as pan-tilt angles
of the camera and the target object location. This information is shared among
all the processes through the dynamic memory. Since the shared information
is written as a temporal history (i.e., time-series data) and shared among the
processes, the time information in all the processes must be consistent. In our
system, therefore, all the processes that work in a single processor share a
single internal clock in the processor and the internal clocks of all processors
are synchronized.

The read/write operations from/to the dynamic memory are defined as follows
(Fig. 6):

Write operation:
When a process computes a value v of a variable at a certain moment t,

it writes (v, t) into the dynamic memory. Since such computation is done
repeatedly according to the dynamics of the process, a discrete temporal
sequence of values is recorded for each variable in the dynamic memory
(the sequence of black dots in Fig. 6). Note that since the speed of the
computation varies depending on input data, the temporal interval between
a pair of consecutive values becomes irregular.

Read operation:
Temporal interpolation: A reader process runs in parallel to the writer

process and tries to read the value of the variable from the dynamic memory
at a certain moment according to its own dynamics: for example, the value at
T1 in Fig. 6. When no value is recorded at the specified moment, the dynamic
memory interpolates it from its neighboring recorded discrete values. With
this function, the reader process can read a value at any temporal moment
along the continuous temporal axis.

Future prediction: A reader process may run fast and require data that
have not yet been written by the writer process (for example, the value at

T3 in Fig. 6). In such cases, the dynamic memory predicts an expected value
in the future based on the data recorded so far and returns it to the reader
process. Note that as illustrated in Fig. 6, multiple values may be defined
by the interpolation and prediction functions, for example, at NOW and
T2 in Fig. 6. We have to define the functions to avoid such multiple value
generation.

Since a variable in the dynamic memory represents a state of some dynamics of
an object (e.g., pan-tilt-zoom parameters of an active camera), the interpola-
tion and prediction functions associated with the variable should be designed
to closely model the dynamics of the object. As stated in [20], therefore, off-
line modeling and calibration of the object dynamics should be done a priori
to define the functions.

In addition, to estimate the appropriate value from observed values with errors,
the dynamic memory employs the Kalman Filter in the read operation, also
as described in detail in [20].

3.3 Intra-AVA Layer: Interaction between Modules within an AVA

In the bottom layer in Fig. 5, perception, action and communication modules
that comprise an AVA exchange the time-series information with each other via
the dynamic memory[20] possessed by each AVA. With the dynamic memory,
modules can exchange their information asynchronously at any time. The
interactions among modules realize the functions of an AVA.

3.3.1 Perception Module

The tasks of the perception module are as follows:

(1) Capture an image.
(2) Detect anomalous regions in the captured image.
(3) Distinguish object regions in the observed image and obtain the informa-

tion for each object.
(4) Determine its own target from the detected objects.

While tasks 1 and 2 above are similar to those of the single-target tracking sys-
tem proposed previously in [20], the perception module must establish object
identification (i.e., tasks 3 and 4 above) in the multi-target tracking system.
Note that a freelancer-AVA performs only tasks 1 and 2 because it should
observe a wide area without gazing at a specific object.

After the detection of anomalous regions, the perception module examines
whether or not each detected pixel is adjacent to another: if adjoining pixels
are detected as anomalous regions, they are regarded as the region of the same
object. The centroid and the size of detected objectp are denoted by (xp

d, y
p
d)

and Sp, respectively. The pan-tilt angles of objectp at the image capturing
time t (denoted by (P p

obj(t), T
p
obj(t))) is represented by

⎛
⎜⎝ P p

obj(t)

T p
obj(t)

⎞
⎟⎠ =

⎛
⎜⎝ Pcam(t)

Tcam(t)

⎞
⎟⎠ +

⎛
⎜⎝ arctan(xp

d/f(t))

arctan(yp
d/f(t))

⎞
⎟⎠ , (5)

where (Pcam(t), Tcam(t)) f(t) denote the pan-tilt angle and focal length of the
camera at t, respectively. That is, the 3D view direction from the projection
center to objectp at t is denoted by (P p

obj(t), T
p
obj(t)). We call this 3D view

direction a 3D view line Lp(t). The 3D view line Lp(t) and the region size
Sp(t) are regarded as the information of objectp at t.

When the module detects N objects at t + 1, it computes and records L1(t +
1), · · · , LN (t+1) and S1(t+1), · · · , SN(t+1) into the dynamic memory. Then,
the module compares them with the 3D view line toward the currently tracked
target at t + 1, L̂(t + 1). Note that L̂(t + 1) can be read from the dynamic
memory regardless of the temporal moment t + 1. Comparison of the object
information observed at the same time (i.e., L1(t + 1), · · · , LN(t + 1) and
L̂(t + 1)) makes object identification reliable. Suppose Lx(t + 1) is closest to
L̂(t+1), where x ∈ {1, · · · , N}. Then, the module regards Lx(t+1) as denoting
the newest target view line.

3.3.2 Action Module

The action module in a freelancer-AVA moves its camera along the predefined
trajectory to search for objects, except when it receives the 3D position of a
target object from an agency, and the camera is controlled toward that 3D
position (described in detail in Section 3.6).

In a member-AVA, on the other hand, the action module controls the camera to
gaze at a target. The action module can obtain two types of object information
from its dynamic memory:

3D position-based control As described below, when an agency with mul-
tiple AVAs tracks a target, it measures the 3D position of the target (i.e.,
P̂ (t)) and sends it to all member-AVAs, which is then written into the dy-
namic memory by the communication module.

2D appearance-based control The perception module estimates the ob-
ject information from the observed image (i.e., L1(t + 1), · · · , LN(t + 1) and

S1(t + 1), · · · , SN(t + 1)) and writes it into the dynamic memory.

When an active camera is ready to accept a control command, the action
module first reads P̂ (now) from the dynamic memory.

3D position-based control Suppose the newest P̂ (t) in the dynamic mem-
ory is obtained at tnew. If the interval between now and tnew is shorter than
the predefined threshold, the estimated P̂ (now) is considered to be valid.
When P̂ (now) is valid, the module controls the camera to gaze at the tar-
get. Since P̂ (t) is sent to a member-AVA when it loses sight of the target
(described in Section 3.4.4), the zooming factor is adjusted to the widest
field of vision.

2D appearance-based control Otherwise, the module reads L̂(now) and
Ŝ(now) from the dynamic memory to 1) control the view direction toward
L̂(now) and 2) adjust the zooming factor to capture the whole image of the
target object.

Here, the camera is controlled by the prediction-based tracking method
with the dynamic memory proposed in [20]: the module controls the cam-
era toward the target position at the next camera control timing (tnext) in
accordance with the target position at tnext and the camera pan-tilt angles
at now, both of which are read from the dynamic memory.

The 2D appearance-based control is superior when a member-AVA observes its
target object clearly and precisely because the camera can be controlled based
on prediction and high-resolution images can be acquired. When a member-
AVA fails in tracking its target object, for example, when a target object is
(partially) occluded by other moving objects or obstacles, the camera should
be controlled based on reliable information about the target object; an agency
can provide the reliable 3D position of the target object, which is estimated by
integrating 3D view lines observed by its member-AVAs. Therefore, we defined
the algorithm for controlling the camera as described above.

3.3.3 Communication Module

Data exchanged by the communication module over the network can be clas-
sified into two types: detected object data (e.g., L̂(t) and P̂ (t)) and messages
for various communication protocols, which will be described later. Object
information sent from an AVA is listed in Table 1. An AVA transmits the
message in the different ways depending on its role:

• The message is broadcasted if the AVA functions as a freelancer-AVA. This
broadcast message is accepted only by agencies.

• The message is sent only to its agency if the AVA functions as a member-
AVA.

Table 1
Object information sent from an AVA to the agencies.

Entry Information

AVA information AVA-ID ID of an AVA

External parameters External camera parameters
(3D position and view direc-
tion)

Number The number of detected ob-
jects

Time The time at which the AVA
observed the target

Detected information
{1, · · · , N}

Object1 View line 3D view line from the camera
to object1 (L1)

Target flag If an AVA is tracking object1,
the value is 1, otherwise 0.

...
...

ObjectN View line 3D view line from a camera to
objectN (LN)

Target flag If an AVA is tracking objectN ,
the value is 1, otherwise the
value is 0.

3.3.4 Dynamic Memory: Interaction between the Modules

To function cooperatively as an AVA, perception, action and communication
modules must dynamically exchange the time-series information maintained
by each module. Each module provides the following information:

Perception: 3D view lines toward detected objects.
Action: Camera parameters (i.e., pan, tilt and zoom).
Communication: Received information of the target.

This information exchange is realized through the dynamic memory. Its con-
tents are shown in Table 2. With the dynamic memory, all modules can ex-
change their information asynchronously at any time. Therefore, each module
can function autonomously without damaging the reactivity required for a
real-time system.

Table 2
Entries of the dynamic memory in the intra-AVA layer.

Entry Information

Camera information Pan-Tilt-Zoom Pan-Tilt-Zoom parameters
are recorded as time-series
data (Pcam(t), Tcam(t),
Zcam(t)).

Target information 3D position 3D positions of the target are
recorded as time-series data
(P̂ (t)).

Number The number of detected ob-
jects

Detected information
{1, · · · , N}

Object1 View line 3D view line from a camera
to object1 is recorder as time-
series data (L1(t)).

Target flag If an AVA is tracking object1,
the value is 1, otherwise 0.

...
...

ObjectN View line 3D view line from a camera to
objectN is recorded as time-
series data (LN (t)).

Target flag If an AVA is tracking objectN ,
the value is 1, otherwise the
value is 0.

3.4 Intra-agency Layer: Interaction between AVAs

As defined above, an agency consists of a group of AVAs that track the same
target. The intra-agency layer (the middle layer in Fig. 5) consists of member-
AVAs belonging to the same agency simultaneously. In our system, an agency
should show a one-to-one correspondence to a target. To make this correspon-
dence dynamically established and persistently maintained, member-AVAs in
the same agency are required to exchange information for both spatial and
temporal object identification.

3.4.1 Object Identification

3.4.1.1 Spatial Object Identification The agency has to establish ob-
ject identification between the groups of the 3D view lines detected and trans-
mitted by its member-AVAs. When member-AVAs1,···,M in the same agency
capture the images, the agency must establish object identification between

Member2

Member1

Member3

Agency

L (T)3

L (T)1

L (T)2

3D PositionL (T)1
2

L (T)2
2

1

1
1Comparison

Member2

Member1

Member3

Agency

P (T)

Comparison

P (T)^ 1

P (T)2

(a) Spatial object identification (b) Temporal object identification

Fig. 7. Object identification established in the intra-agency layer.

the 3D view lines {Li
1(t1)|i = 1, · · · , N1}, · · ·, {Li

M(tM)|i = 1, · · · , NM}, where
{Li

m(tm)|i = 1, · · · , Nm} denotes the 3D view lines detected by member-AVAm

at tm (Fig. 7 (a)). For spatial object identification, the system checks distances
between the 3D view lines detected by different member-AVAs. Note that
member-AVAs in an agency observe 3D view lines toward objects at differ-
ent times because AVAs capture images autonomously. Furthermore, message
transmission over the network introduces an unpredictable delay between the
observation timing by a member-AVA and the object identification timing. The
results of object identification are, therefore, unreliable if the asynchronous
object data are compared with each other.

Other distributed systems that consist of autonomous cameras coped with this
problem as follows:

• In [9], all object information regarding position, height, and width, observed
by multiple cameras, is integrated by a Bayesian algorithm to increase the
robustness of object identification. This method does not take into account
the synchronization problem.

• In [11], the newest information gathered from each camera is considered to
be observed at the same time. In [21,10], the object information includes
a time stamp (Let ti denote the time stamp of informationi). The system
regards the information observed at ti and tj , where |ti − tj | is sufficiently
small, as simultaneous information. These approximate methods break down
under complicated conditions and with network congestion.

To resolve this problem, our system employs the Virtual Synchronization to
virtually adjust observation timings of the 3D view lines, which we proposed
in [20,22] (see Section 3.4.2 for details). These virtually synchronized 3D view
lines are compared between different AVAs, and the 3D distance between the

view lines is computed. If the 3D distance between the view lines is less than a
given threshold, these view lines are considered to be information of the same
object. In addition, the intersection of the identified 3D view lines is regarded
as the 3D position of the object.

In the example shown in Fig. 7 (a), 3D view lines detected by member-AVAs1,
member-AVAs2 and member-AVAs3 are compared with each other. All the 3D
view lines are virtually synchronized at T in advance. Then, ‘L1

1(T), L1
2(T)

and L1
3(T)’ and ‘L2

1(T) and L2
2(T)’ are identified with each other. Based on

these correspondences, the system computes the intersections of the 3D view
lines that were identified with each other, and then regards these intersections
as the 3D positions of the detected objects.

Note that an agency may find none or multiple sets of such nearly intersecting
3D view lines. To cope with these situations, the agency conducts temporal
object identification as described below.

3.4.1.2 Temporal Object Identification To gaze at the target contin-
uously, the agency compares the 3D trajectory of the target with the 3D po-
sitions of the objects newly computed by spatial object identification. When
multiple 3D locations are obtained by spatial object identification, the agency
selects the one closest to the target trajectory. On the other hand, when spatial
object identification fails and no 3D object location is obtained, the agency se-
lects the 3D view line that is closest to the latest recorded target 3D position.
Then, the agency projects the target 3D position onto the selected view line
to estimate the new 3D target position. Note that when an agency contains
only a single AVA, neither spatial nor temporal object identifications succeed
and hence the member-AVA conducts only 2D appearance-based tracking by
itself.

In the example shown in Fig. 7 (b), the system estimates the 3D positions of
two objects at T (denoted by P1(T) and P2(T)) by spatial object identification.
The system then compares these 3D positions with the 3D position of the
target at T (denoted by P̂ (T)). Note that P̂ (T) can be computed by employing
the virtual synchronization regardless of the temporal moment T specifies
(described later). As a result, P1(T) is identified with P̂ (T).

3.4.2 Virtual Synchronization

Here, we discuss the dynamic aspects of the above identification processes.

3.4.2.1 Virtual Synchronization for Spatial Object Identification
The unpredictable delay between the observation timing by a member-AVA

Table 3
Entries of the dynamic memory in the intra-agency layer.

Entry Information

Target info. 3D position 3D positions of the target are
recorded as time-series data.

3D view line 3D view lines toward the
target are recorded as time-
series data.

Object-priority The object-priority of the
target

Member info.
{1, · · · ,M}

Number The number of member-
AVAs at the present time.

member-AVA1 AVA-ID ID of member-AVA1

External
parameters

External camera parameters
of AVA1’s camera

...
...

member-AVAM AVA-ID ID of member-AVAM

External
parameters

External camera parameters
of AVAM ’s camera

Detected info.
{1, · · · ,M}

Detected Information of
member-AVA1

Information sent from
member-AVA1 is recorded as
time-series data.

...
...

Detected Information of
member-AVAM

Information sent from
member-AVAM is recorded
as time-series data.

and the object identification timing results in unreliable object identification.
To resolve this problem, we introduce the dynamic memory into the intra-
agency layer. By employing the dynamic memory, a 3D view line at an arbi-
trary time can be estimated from asynchronous discrete time-series data. The
system can, therefore, estimate the 3D view line observed by all cameras at
the same time. We call this function the Virtual Synchronization.

In our system, spatial object identification is realized as follows. When an
agency is formed, an Agency Manager is generated at the same time. An
agency manager is an autonomous software agent 5 independent of AVAs, and
performs the following tasks as a delegate of an agency.

5 In our system, an agency manager is implemented as a UNIX process on a PC.

time

time

Real Value
Estimated Value

Sequence of
View lines

Sequence of
View lines

Interpolation

Virtual
Synchronization

Observed
by Member1

Estimated Value

Estimation

T

View direction

View direction

Observed
by Member2

Estimated Value

L (T)2

_

L (T)1

_

Member2

Member1

Member3

Agency

Virtual synch.

O(t)3O(t)2O(t)1

L (t)33

L (t)31
L (t)11

L (t)32
L (t)22

_

_

Identify!

(a)Readout from the dynamic memory (b)Spatial object identification

Fig. 8. Virtual synchronization for spatial object identification among member-AVAs
in the same agency.

• Management of the dynamic memory in each agency. The contents of the
dynamic memory in the intra-agency layer are shown in Table 3.

• Object identification.
• Communication with other agencies and AVAs.

That is, an agency is a conceptual group, and an agency manager is an entity
of the agency.

All the target information is managed by each agency manager. For intensive
management of the target information by each agency, the system handles the
object information as follows:

• All member-AVAs send the information of the detected objects only to their
agency manager.

• Even if the agency disappears because the target cannot be observed, the
observed information will be managed by the agency that tracks the same
target when it is detected again (described later).

Figure 8 shows the mechanism of the virtual synchronization for spatial object
identification. All 3D view lines computed by each member-AVA are transmit-
ted to the agency manager, which then records them into its internal dynamic
memory. For example, Fig. 8 (a) shows a pair of temporal sequences of 3D view
line data (indicated by white points in the figure) transmitted from member-
AVA1 and member-AVA2, respectively. When the manager wants to establish
spatial object identification at T , it can read the pair of the synchronized 3D
view line data at T from the dynamic memory (i.e. L̄1(T) and L̄2(T) in Fig.
8 (a)). Figure 8 (b) shows an example of spatial object identification with the
virtual synchronization. In this example, AVA1, AVA2 and AVA3 capture the

time

Real value
Estimated value

Sequence of
Positions

Interpolation

Virtual
Synchronization

Estimation

Position Estimated value P (T)
_

T

Reconstructed value P (T)

Member2

Member1

Member3

Agency

Virtual synch.

P (t+1)P (t)

_
Identify!

^

P (t+1)

L (t+1)1

L (t+1)2
L (t+1)3

(a)Readout from the dynamic memory (b)Temporal object identification

Fig. 9. Virtual synchronization for temporal object identification.

images at t1, t2 and t3, and detect the 3D view lines L1(t1), L2(t2) and L3(t3),
respectively. The agency manager synchronizes these 3D view lines at t3 to
read L̄1(t3), L̄2(t3) and L3(t3) from the dynamic memory. By comparing these
virtually synchronized values, the agency manager can estimate the reliable
object position P (t3) by spatial object identification.

3.4.2.2 Virtual Synchronization for Temporal Object Identification
The virtual synchronization is also effective in temporal object identification.
Let P̂ (t) denote the 3D target trajectory recorded in the dynamic memory
and {Pi(T)|i = 1, · · · , M} the 3D positions of the objects reconstructed at T
by spatial object identification. Then the agency manager 1) reads P̂ (T) (i.e.
the estimated target position at T) from the dynamic memory, 2) selects the
one among {Pi(T)|i = 1, · · · , M} closest to P̂ (T), and 3) records it into the
dynamic memory as the target position.

Figure 9 shows an example of temporal object identification with the virtual
synchronization. By interpolating the reconstructed 3D positions of the target,
the agency manager can estimate the target position at T (Fig. 9 (a)). In Fig.
9 (b), the 3D position P (t + 1) is reconstructed at t + 1. The agency manager
then estimates the 3D position of the target at t + 1 (i.e., P̂ (t + 1)) and
compares P̂ (t + 1) with P (t + 1) for temporal object identification.

As mentioned above, information exchange in the intra-agency layer through
the dynamic memory allows the system to stabilize both spatial and temporal
object identification. Depending on whether or not temporal object identifi-
cation is successful, the dynamic interactions are activated. These dynamic
interactions are defined by the following three cooperative-tracking protocols:

(2-b)
Member

Identification Success
Message

Member

3D view line

(1)

Detect! Member

(ID Request) object

(2-a)
Member

Freelancer Freelancer

Freelancer

Identification Failure
Message

Member

Agency Agency
Generate!

Agency
Agency

Fig. 10. Agency formation protocol.

Agency formation protocol defines a new agency generation procedure by
a freelancer-AVA and a participation procedure of a freelancer-AVA into an
existing agency.

Agency maintenance protocol defines procedures for cooperative track-
ing, continuous maintenance of an agency and the elimination of an agency.

Agency spawning protocol defines a new agency generation procedure from
an existing agency.

3.4.3 Agency Formation Protocol

Initially, each AVA searches for objects independently. When a freelancer-AVA
finds a new object, it requests object identification from existing agencies
between the newly detected object and the target of each agency (see Section
3.6 for details) (Fig. 10 (1)). Depending on whether or not the result of this
object identification is successful, the freelancer-AVA works as follows:

Case A: If no agency establishes successful identification, the freelancer-AVA
generates a new agency manager and joins this agency. The agency that
tracks the newly detected object is then formed (Fig. 10 (2-a)).

If the freelancer-AVA detects multiple objects and two or more of them
are regarded as newly detected objects, it selects the object with the highest
object-priority as its target.

Case B: If an agency establishes successful identification, the freelancer-AVA
joins the agency that has made the successful identification (Fig. 10 (2-b)).

If the freelancer-AVA detects multiple objects and two or more of them
are identified with the target objects of existing agencies, it determines its
agency depending on their object-priorities.

Depending on the relationship between the current state of the system and the
task-constraint, the agency formation is rejected even if the freelancer-AVA
finds an object. That is, if there are few freelancer-AVAs with regard to search,
the number of freelancer-AVAs must not decrease. Then, in the above cases A

object

(1)

Member Member

(3)

Member

Identification Failure
Message

Member

Obstacle

Invisible

3D view line
(Detected result)

(2)

Member Member

3D object position
(Gaze navigation)

Member m

Agency Agency

Agency

Member m

Fig. 11. Agency maintenance protocol.

and B, the freelancer-AVA and the agency work as follows:

Case A: The freelancer-AVA cannot become a member-AVA, and a new
agency is not generated.

Case B: The agency manager that established successful identification ex-
amines the values of the utility-function in the case that the freelancer-AVA
replaces each of the current member-AVAs in order to determine 1) whether
to absorb the freelancer-AVA instead of one of the current member-AVAs,
and then 2) which member-AVA should be released if the freelancer-AVA
joins the agency.

3.4.4 Agency Maintenance Protocol

After an agency is generated, the agency manager continues spatial and tem-
poral object identification for cooperative tracking (Fig. 11 (1)). If temporal
object identification between the targets of the agency and member-AVAm fails
(i.e., if member-AVAm does not gaze at the target of the agency), the agency
manager reports the 3D position of the target to member-AVAm. This infor-
mation navigates the gaze of member-AVAm toward the target (Fig. 11 (2)).
Nevertheless, if this identification fails for a long time, the agency manager
forces member-AVAm out of the agency making it a freelancer-AVA (Fig. 11
(3)). If all member-AVAs are unable to observe the target, the agency manager
eliminates the agency and all its member-AVAs become freelancer-AVAs.

In addition,the agency manager adjusts the number of member-AVAs depend-
ing on the relationship between the current state of the system and the task-
constraint: if there are insufficient freelancer-AVAs, the agency manager must
release its member-AVAs to increase the number of freelancer-AVAs.

In our system, all information about the same object should be managed
together. For this purpose, the agency manager records its object information
to an object database when it is eliminated. When an agency manager is newly

MemberMember

3D view line
(Detected result)

MemberMember

Member

Agency Spawn
Message

MemberMember

Member

object
new

(1) (2) (3)

Agency Agency

Agency

Agency

n n

new object

Ln

Member n

Ln

Fig. 12. Agency spawning protocol.

generated, it 1) reads object information from the database and 2) compares its
target information with the read information to check if its target corresponds
to a target that has been tracked previously. If so, the corresponding target
information is moved from the database into the dynamic memory of the newly
generated agency.

In the system proposed in this paper, 1) the object information recorded in
the database consists only of its trajectory and is represented as time-series
information in the same way as the information in the dynamic memory, and 2)
object identification is realized only by comparing the trajectories of observed
objects as described in Sections 3.4.1 and 3.4.2. Accordingly, 1) this system can
identify an object that has lost track of for a short interval but 2) identification
fails if an object is not observed for a long time 6 .

3.4.5 Agency Spawning Protocol

After spatial and temporal object identification, the agency manager may find
such a 3D view line(s) that does not correspond to the target; this represents
the detection of a new object by its member-AVA. Let Ln denote such a 3D
view line detected by AVAn (Fig. 12 (1)). The agency manager then requires
other agencies to compare Ln with their own targets for object identification.
The results of object identification are returned from other agency managers.
If none of identification is successful (namely, if none of the agencies track Ln),
the agency manager orders member-AVAn to generate a new agency (Fig. 12
(2)) and join it (Fig. 12 (3)).

Note that agency generation by the agency spawning is also restrained if the
search-level of the current state is less than that of the task-constraint.

6 To improve object identification, it is necessary to employ face, gait, shape, and
other recognition methods.

Table 4
Agency information.

Entry Information

Target info. 3D information 3D position of the target P̂
or 3D view line of the target
L̂

Object-priority The object-priority of the
target

Time The time when the target is
observed

Member info.
{1, · · · ,M}

Number The number of member-
AVAs

member-AVA1 AVA-ID ID of member-AVA1

External
parameters

External camera parameters
of AVA1’s camera

...
...

member-AVAM AVA-ID ID of member-AVAM

External
parameters

External camera parameters
of AVAM ’s camera

3.5 Inter-agency Layer: Interaction between Agencies

The inter-agency layer consists of all existing agencies (top layer in Fig. 5).
In multi-target tracking, the system should allocate resources adaptively: the
system must adaptively determine which AVAs should track which targets.
To realize this adaptive resource allocation, information about targets and
member-AVAs is exchanged between agency managers. We call this informa-
tion Agency Information. The contents of the agency information are listed in
Table 4.

The dynamic interactions between agency managers are triggered based on
object identification of target 3D positions across agencies. That is, when a
new target 3D position is obtained, agency manageri broadcasts it to the
others. Agency managerj , which receives this information, compares it with
the 3D position of its own target to check object identification. This object
identification is not reliable if these 3D positions are observed at different
times. This problem can be resolved by the virtual synchronization in the
same way as temporal object identification in the intra-agency layer. With
the 3D positions of the target recorded as time-series data in the dynamic
memory, agency managerj can synchronize the 3D position of its target with
the received 3D position.

Unify Request
Message

Member

Member

Member

Member

Member

Member

Member

Member

Member

(1) (2) (3)

AgencyAgencyAgency

Agency Agency

AAA

B B

Change Agency
Message

Fig. 13. Agency unification protocol.

Depending on whether or not the result of the above object identification is
successful, either of the following cooperative-tracking protocol is activated:

Agency unification protocol defines a merging procedure of the agencies
that happen to track the same object.

Agency restructuring protocol defines a reformation procedure of the member-
AVAs between agencies.

3.5.1 Agency Unification Protocol

This protocol is activated when the result of the inter-agency object identifi-
cation is successful.

In principle, the system should maintain the one-to-one correspondence be-
tween agencies and detected targets. However, this correspondence is some-
times violated due to failure of object identification and discrimination. Actual
examples of such situations are as follows:

• Asynchronous observations and/or errors in object detection by
individual AVAs: If a single object is first regarded as multiple objects
due to failure of object identification, multiple agencies are formed for the
same object by mistake. This error is recovered by subsequent observation.
That is, when object identification between the agencies is successful, these
agencies merge by the agency unification.

• Multiple targets that cannot be separated: The agency manager may
consider multiple objects in the scene as a single object due to failure of ob-
ject identification. This may occur when different objects become too close
to separate. In this case, the agencies that make successful identification
merge temporally to maintain the one-to-one correspondence between the
agency and the detected target.

This protocol is required to cope with failures of object identification and

AVA Request
Message

Change Agency
Message

Join Agency
Message

Member

Member

Member

Member

Member Member

Member

Member

(1) (2) (3)

Member

Member

AgencyC AgencyC
AgencyC

AgencyD

AgencyD

AgencyD

o

oMember

TargetC

DTarget

Fig. 14. Agency restructuring protocol.

discrimination.

Figure 13 shows an example of the agency unification. Agency managerA,
which has performed successful object identification with the target of agencyB ,
sends a message to agency managerB. This message asks agency managerB

to join agencyA (Fig. 13 (1)). Then, agency managerB sends messages to its
member-AVAs (Fig. 13 (2)) and eliminates itself. Thus, the two agencies merge
(Fig. 13 (3)).

As noted above, agencies corresponding to multiple different targets may be
unified if they are very close. However, this heterogeneously unified agency
can be separated again into two agencies by the agency spawning protocol
when the distance between the targets becomes larger.

3.5.2 Agency Restructuring Protocol

This protocol is activated when the result of inter-agency object identifica-
tion is unsuccessful. The agency manager activates this protocol taking into
account the following factors:

• The number of member-AVAs in each agency is determined by the object-
priority of its target.

• Under the condition of restriction of number, each agency is attended by
AVAs that are suitable for gazing at its target. This criterion is given by
the utility-function.

Actual examples of situations that cause the agency restructuring are as fol-
lows:

• Due to new agency generation: When a new agency is generated, this
agency requests member-AVAs from other agencies based on the object-
priority of the target.

• Due to object motion: Depending on the 3D position of the target, agen-
cies exchange their member-AVAs to employ those AVAs that are suitable
for gazing at each target based on the object-priority of the utility-function.

Figure 14 shows an example of the agency restructuring.

(1) If agency managerD makes unsuccessful object identification with agencyC ,
it decides whether or not to request a member-AVA from agencyC . Such
an AVA-request message is sent to agency managerC (Fig. 14 (1)).

(2) When agency managerC is requested to transfer its member-AVA, it de-
termines the member-AVA that is more suitable for tracking targetD

rather than targetC , where targetC and targetD indicate the targets of
agencyC and agencyD, respectively. Agency managerC orders the selected
AVA (member-AVAo) to transfer to agencyD (“Change agency message”
in Fig. 14 (2)). Then, member-AVAo informs agencyD that it has joined
agencyC (“Join agency message” in Fig. 14, (2)).

(3) Member-AVAo begins working as a member of agencyD (Fig. 14 (3)).

3.5.3 Exclusive Interaction in the Inter-agency Layer

A member-AVA transfers between agencies as a result of dynamic interactions
in the inter-agency layer. Although this is necessary for continuous tracking,
the state of the system is unstable during agency reformation.

The following examples show the actual problems that occur during the dy-
namic interaction between agencies:

Agency unification: If two agency managers decide to join one side at the
same time, both agencies may fail in the agency unification because the
destination agency will have disappeared.

Agency restructuring: If multiple agencies transfer their member-AVAs to
another agency at the same time, these AVAs may swing between agencies
due to radical reformation of agencies.

To resolve these problems, each agency activates an inter-agency cooperative-
tracking protocol with only a single agency simultaneously. In addition, each
protocol is activated depending on the following conditions:

Agency unification: When agency Q is requested to join agencyP , it decides
whether or not to accept the request according to its state as follows:
• If agencyQ is not concerned with any inter-agency interaction, agencyQ

accepts the request.
• If agencyQ has requested the agency unification from agencyP , agencyQ

compares the times when each agency sent the message to one side.
AgencyQ accepts the request only if agencyP sent the message earlier than

agencyQ.
• If agencyQ is interacting with another agency, agencyQ rejects the request.

Agency restructuring: When an agency receives a request for transfer of a
member-AVA, it decides whether or not to accept the request according to
its condition as follows:
• If the agency is not concerned with any inter-agency interaction, it accepts

the request.
• If the agency is interacting with another agency, it rejects the request.

3.6 Communication with Freelancer-AVAs

In our system, an agency manager communicates not only with other agency
managers but also with all freelancer-AVAs through broadcast messages (top
row in Fig. 5). A freelancer-AVA must exchange object information with
agency managers to achieve the following functions:

• Maintain a consistency of the one-to-one correspondence between an agency
and its target. If there is no agency tracking the object detected by a
freelancer-AVA, the system can generate a new agency. If an agency al-
ready exists that is tracking this object, the system should not generate a
new agency.

• Investigate the current state of the system. If a message from a freelancer-
AVA is newly received, the search-level of the system increases. Similarly,
if a message from an agency manager is newly received, the tracking-level
of the system increases based on the number of member-AVAs belonging to
the agency.

The contents of this message are listed in Table 1.

As described in Section 3.4.3 describing the agency formation protocol, a free-
lancer reports object information when it detects an object. An agency man-
ager that has received object information from a freelancer-AVA establishes
spatial object identification between its target information and the received
object information. Then, the agency manager sends the result of identifica-
tion to the freelancer-AVA in reply. The freelancer-AVA that has received this
reply activates the agency formation depending on the received issue.

On the other hand, an agency manager broadcasts its agency information. A
freelancer-AVA that has received the agency information refers to the target
position included in the received message. The freelancer-AVA determines the
next role depending on the current state of the system and the task-constraint
as follows:

(Search-level of the current state) > (Search-level of the task-constraint)

The freelancer-AVA can start tracking the target. If it starts tracking, it
points its gaze toward the 3D position of the target.

(Search-level of the current state) ≤ (Search-level of the task-constraint)
The freelancer-AVA should continue to search for a new object.

4 Performance Characteristics of the System

4.1 Feasibility of Persistent Tracking

In general, it is difficult to guarantee that the system will always be able to
track all targets in every situation in the real world. Tracking ability is depen-
dent on various factors (e.g., the numbers of cameras and targets, mechanical
limitations of the cameras, etc.). Here, we discuss the relationships between
the numbers of cameras and targets, and show the upper limitation of the
targets to be tracked simultaneously in the proposed system.

To track a target, an agency is generated. We define an agency as a repre-
sentation of a target in the system. Based on this definition, the maximum
number of targets is equal to the maximum number of agencies. An agency is
generated by an AVA that detects a target, and the agency must be attended
by at least one member-AVA to track its target. Therefore, the maximum
number of agencies is the total number of AVAs in the system. In the pro-
posed system, however, an agency reconstructs 3D information of its target
from 2D information of the object observed by multiple member-AVAs. The
3D information of the target assists the agency to keep tracking the target as
follows:

• The reconstructed 3D position of the target is useful for object identification
not only among AVAs but also among agencies.

• Even if a member-AVA cannot observe its target because of being disturbed
by obstacles or other moving objects, it can gaze at the target by receiving
the 3D position of the target.

• Comparing the 3D positions of the targets with those of the cameras allows
the system to determine which AVA is appropriate for gazing at each target.

Thus, each agency should have at least two member-AVAs for reliable object
tracking.

Based on the above discussion, the relationships between the tracking ability
of the system and the numbers of targets and AVAs (denoted by nt and na,
respectively) can be summarized as follows:

Case 1: nt ≤ �na

2
�: The system can stably track all targets while obtaining

their 3D information.
Case 2: �na

2
� < nt ≤ na: Although the system can track all targets, (nt −

�na

2
�) or more targets are tracked by only one AVA.

Case 3: na < nt: (nt − na) or more objects cannot be tracked by the system
simultaneously.

Note that �n� denotes the maximum integer that is not more than n.

The limitation of the number of targets results because 1) an agency receives
the information of objects only from its member-AVAs and 2) an agency must
be attended by at least one member-AVA. To design alternative methods, we
could modify the system as follows:

Broadcast for 3D reconstruction: If an agency receives the object infor-
mation from AVAs that are not its member-AVAs, it can reconstruct the
3D information of the target even when it has only a single member-AVA.
This information exchange allows all agencies to stably track their targets
even in case 2 above. In this case, however, member-AVAs must send the
information regarding the detected objects not only to their own agency
manager but also to other agency managers, thus increasing network load.
In particular, the broadcast of object information to all agencies by each
member-AVA will produce a huge network load.

Active camera control for vacant agencies: If an agency can exist with-
out any member-AVA, the system can track all targets even in case 3 above.
To obtain the information of the target, the agency without any member-
AVA must gather the object information from non-member-AVAs. There-
fore, it is necessary to resolve the problem of increasing network load de-
scribed above. In addition, a vacant agency has an essential problem: since
the vacant agency cannot control any camera, it is not guaranteed that this
agency will 1) keep tracking the target by controlling pan-tilt parameters
of a camera(s) or 2) acquire high-resolution images by adjusting the zoom
parameter of a camera(s).

To avoid the problems mentioned above, we designed the system such that
1) the agency reconstructs the 3D information of its target only from the
information received from its member-AVAs and 2) each agency has at least
one member-AVA.

4.2 Completeness of Cooperative-tracking Protocols

In the proposed system, 1) all events occurring in the real world are char-
acterized by the results of object identification and 2) object identification
is established when an agency receives a message including the information

Table 5
Cooperative-tracking protocols activated depending on the result of object identifi-
cation.

Received object information Result of object identification

Success Failure

3D view lines toward detected
objects from freelancer-AVA

Agency Formation Agency Formation

3D view line of the target from
member-AVA

Agency Maintenance Agency Maintenance,
Agency Spawning

3D view lines toward non-
targets from member-AVA

Agency Maintenance Agency Spawning

3D point of the target from
agency

Agency Unification Agency Restructuring

of detected objects. Therefore, by verifying the types of cooperative-tracking
protocols activated depending on the relation between the type of received
object information and the result of object identification, we can confirm the
necessity and sufficiency of protocols for multi-target tracking.

Table 5 shows the types the cooperative-tracking protocols designed in accor-
dance with the types and result of object identification.

4.3 Soundness of Communication and State Transition

In each layer, multiple parallel processes 1) dynamically exchange information
with each other for cooperation and 2) change their states adaptively. These
dynamic interactions and state transitions must be realized without causing
deadlock.

Intra-AVA layer: The perception, action, and communication modules ex-
change information through the dynamic memory in the intra-AVA layer.
The dynamic memory enables the modules to asynchronously obtain the
information of another process at an arbitrary time.

Intra-agency layer: An agency manager receives observed information from
its member-AVAs and continues spatiotemporal object identification while
maintaining its own intrinsic dynamics. Since each agency manager has its
own dynamic memory, 1) message transmission from a member-AVA to its
agency manager is guaranteed and 2) reliable object identification in the
intra-agency layer is achieved.

In addition, several types of information (e.g., 3D position of the tar-
get and messages based on the cooperative-tracking protocols) are reported
from the agency manager to its member-AVAs by message transmission. A

initial

FreelancerMember

Agency Spawning

Member (Change Agency)

Agency Restructuring

ε

ε

ε

Agency Formation
(IDF Failure)

Agency Formation
(IDF Success)

Agency Maintenance
(IDM Failure)

Agency Unification

Member (Generate Agency)

Agency Formation

Agency
Maintenance
(IDM Success)

initial

Agency
Agency
(Increase
 Member)

Agency(Decrease Member)

Agency Maintenance
(IDM Success)

ε

Agency Formation

Agency Restructuring
Agency Maintenance
(IDM Failure)

ε

Agency Restructuring
Agency Unification

ε

Agency(Disappear)

Agency Unification
Agency Maintenance
(IDM Failure)

(a) State transition of the AVA (b) State transition of the agency

Fig. 15. State transition networks of the AVA and agency. The boxes and arrows
indicate states and state transitions, respectively. A cooperative-tracking protocol
with each arrow causes a state transition. Protocols shown in bold and italics are
caused by object identification and a message that reports the result of object iden-
tification established by another agency, respectively. An automatic state transition
(denoted by ε) occurs immediately. IDF and IDM denote object identification of the
agency with the freelancer-AVA and member-AVA, respectively.

member-AVA accepts only the message from its agency manager to prevent
it being affected inconsistently by multiple agencies: for example, a mes-
sage delay incurs invalid communication between an agency manager and a
member-AVA belonging to another agency.

Fig. 15 (a) shows the state transition network of the AVA. All the state
transitions of the AVA are caused by the cooperative-tracking protocols de-
scribed in Section 3, provided that the state transitions indicated by arrows
with ε occur automatically and immediately.

Inter-agency layer: Each agency broadcasts its agency information to other
agencies. Depending on the result of inter-agency object identification, var-
ious messages are exchanged between agencies based on the inter-agency
cooperative-tracking protocol. To avoid a conflict of different interactions
between agencies, 1) each agency activates a protocol only with a single
agency simultaneously and 2) a timeout process is utilized to cope with
message delays, dynamic agency generation and elimination, and other un-
predictable factors.

Fig. 15 (b) shows the state transition network of the agency. All the state
transitions of the agency are caused by the cooperative-tracking protocols,
provided that the automatic state transition ε in the same as that of the
AVA.

Thus, the dynamic interactions and state transitions in each layer can be
realized without inconsistencies or deadlock.

5(m)

6(m)

AVA1

AVA5

AVA2
AVA10

AVA6

AVA3

AVA4

AVA7

AVA8

AVA9

X

2(m)

2(m)

L1

L2

500cm

250cm
600cm

1

3

4

5

6

7

9

10

8

2

150cm

150cm

(a) Top view (b) Camera settings

Fig. 16. Experimental environment.

5 Experiments

We conducted several experiments to verify the effectiveness of cooperative
tracking with the proposed system.

5.1 System Organization

In our experiments, we employed ten AVAs, each of which consisted of a
network-connected PC with an active camera.

PC: PentiumIII 600MHz × 2 with Linux operating system.
Active camera: FV-PTZ camera (SONY EVI-G20).
Network: 100M-base Ethernet.

The perception, action and communication modules and the dynamic mem-
ory are implemented by threads on a PC. The communication module sends
messages using UDP. In addition, the internal clocks of all the PCs are syn-
chronized by the Network Time Protocol (NTP)[23]. With these resources,
the perception module can capture images and detect objects in the observed
image at intervals of about 0.1 [sec] on average. The size of each image is 320
× 240 [pixels].

Figure 16 illustrates the camera layout in the experimental environment. The
external camera parameters (i.e., the 3D position and view direction of each
camera) were calibrated in advance.

5.2 Designing Utility-function

The utility-function is examined by each agency manager 1) when an agency
obtains/releases its member-AVA based on the agency formation/maintenance
protocol and 2) when agencies exchange their member-AVAs based on the
agency restructuring protocol.

In our experiments, we designed the utility-function as follows:

Search-value of freelancer-AVAf : For a freelancer-AVA to search for new
objects, it should monitor as wide an observation area as possible.

Let Wf denote the area size of the floor that is visible from AVAf . The
search-value of AVAf (denoted by VSf

) is determined as follows:

VSf
=αS × Wf , (6)

where αS is a constant that is determined such that VSf
is well-balanced with

the tracking-value. VSf
becomes larger as freelancer-AVAs observe wider

areas.
Tracking-value of member-AVAm: For a member-AVA to gaze at its tar-

get object without failure, it should 1) hold the region of the target in the
center of the observed image and 2) gaze at an object that is close to its
camera to allow capture of high-resolution images of the observed object.

Let Dn
m denote the 3D distance between the camera of AVAm and the

target of agencyn, and An
m denote the angle between the central direction

of AVAm’s view angle and the direction from the camera to the target. The
tracking-value of AVAm (denoted by VT n

m
) is determined as follows:

VT n
m

=
1

Dn
m

× 1

An
m

. (7)

5.3 Active Tracking changing Pan-Tilt-Zoom Parameters

First, we demonstrated the performance of the pan-tilt-zoom control algorithm
with the prediction-based tracking method. The system tracked a computer-
controlled mobile robot that moved in the room.

Here, we point out the effectiveness of the proposed tracking method by the
following comparative study. Figures 17 and 18 show observed images taken by
AVA4 in the proposed system (called system A) and the simple active back-
ground subtraction system without modular (perception and action) functions
or prediction-based camera control (system B), respectively. When each sys-
tem worked, the robot moved along the same trajectory at the same speed.

· · ·

· · ·
Fig. 17. Example of observed image sequence taken by the proposed system. Top:
input images, Bottom: detection images.

· · ·

· · ·
Fig. 18. Example of observed image sequence taken by the simple active background
subtraction system. Top: input images, Bottom: detection images.

Table 6
(1) Distance between the image center and the centroid of the detected object region,
and (2) Area size of the detected object.

(1) average (1) variance (2) average (2) variance

System A 44.0[pixels] 6.7[pixels] 5083[pixels] 145[pixels]

System B 16.7[pixels] 1.5[pixels] 5825[pixels] 108[pixels]

The average and variance of (1) the distance between the image center and
the centroid of the detected object region and (2) the area size of the de-
tected object are shown in Table 6. These results indicated that the proposed
system improved the stability of tracking and the feasibility of acquiring high-
resolution images of a target.

5.4 Performance Evaluation of the Virtual Synchronization

We conducted experiments with systems with/without the virtual synchro-
nization. To verify the effectiveness of the virtual synchronization against not
only the asynchronous observations but also network congestion, we broad-
casted vain packets over the network to adjust the network load.

The system tracked two computer-controlled mobile robots. Both the robots
repeated a straight-line motion at a speed of 50 [cm/sec] in the observation
area. L1 and L2 in Fig. 16 (a) show the trajectories of the robots.

Figure 19 (a) shows variations in network conditions when the packet size of
the vain broadcast messages is changed. The errors of spatial identification in

0

4

5

6

7

10

0 320 640 960 1280 1600 1920

message delay (msec)

size of message(kbytes/sec)

2

3

1

8

9

rate of packet loss(%)

40

50

60

70

100

20

30

10

80

90

rate of packet loss

message delay

0

10

15

25

0 320 640 960 1280 1600 1920

spatial error (cm)

size of message(kbytes/sec)

5

20

with virtual synch.
without virtual synch.

0

20

30

50

0 320 640 960 1280 1600 1920

temporal error (cm)

size of message(kbytes/sec)

10

40

with virtual synch.
without virtual synch.

between P(t) and P(t+1)^ ^

between P(t+1) and P(t+1)
- ^

(a) (b) (c)

Fig. 19. Performance evaluation of the virtual synchronization: (a) Delay of mes-
sages (solid line) and Rate of packet loss (dotted line), (b) Error in spatial object
identification, (c) Error in temporal object identification. The horizontal axis indi-
cates the total size of the vain broadcast messages per second.

Fig. 19 (b) denote the average distances between the reconstructed 3D position
and the 3D view line detected by each member-AVA. The errors of temporal
identification in Fig. 19 (c) denote the average distances between the 3D posi-
tions of the target, which were estimated/reconstructed at different times (i.e.,
P̄ (t+1)/P̂ (t) and P̂ (t+1) in the system with/without the virtual synchroniza-
tion). Note that since temporal identification was established at intervals 0.1
[sec] in this experiment, the robot moved 5 [cm] between subsequent temporal
identifications.

The result indicated that the virtual synchronization helps both spatial and
temporal object identification, especially in the case of poor network condi-
tions.

5.5 Verifying Cooperative-tracking Protocols

Finally, we verified the effectiveness of the cooperative-tracking protocols. Our
experimental results demonstrated flexible and reliable multi-target tracking
by cooperation among AVAs.

To verify the effectiveness of the task representation with the task-constraint
and the object-priority, we performed two experiments in the same environ-
ment. In each experiment, we provided the following parameters as the task
representation.

Experiment 1
Task-constraint: Search-level was 0.1. Tracking-level was 0.9.
Object-priority: Values for all objects were 1.0.

Experiment 2
Task-constraint: Search-level was 0.3. Tracking-level was 0.7.
Object-priority: Values for object1 and object2 were 1.0 and 0.5, respec-

tively 7 .

In both experiments, the system tracked two people. Object1 first came into
the observation space from the location ‘X’ (shown in Fig. 16 (a)). Next,
object2 came into the observation space, and both objects then moved freely.

First, we present the results of the first experiment.

Figure 20 shows the partial image sequences observed by each AVA. The im-
ages on the same row were taken by the same AVA. Figure 20 shows images
taken by AVA1, AVA2, AVA4, AVA5, AVA7, AVA8, and AVA9 as examples.
The images on the same column were taken at almost the same time. The
regions enclosed by red and blue lines in the images show the detected regions
of object1 and object2, respectively.

Figure 21 shows the role of each AVA and the agency organization at such
a moment when the same column of images in Fig. 20 were observed. Green
circles indicate freelancer-AVAs. Red and blue circles indicate member-AVAs
belonging to agency1 and agency2, respectively. Red and blue squares indicate
computed locations of object1 and object2 respectively. ‘X’ shown in Fig. 21
indicates location X in Fig. 16 (a).

In this experiment, the system worked as follows:

a: Initially, each AVA searched for objects independently.
b: AVA5 first detected object1 (Fig. 20, 5-b), and then agency1 was formed.
c: All AVAs, with the exception of AVA5, were tracking object1 as the member-

AVAs of agency1 while AVA5 was searching for a new object as a freelancer-
AVA (Fig. 20, 5-c).

d: AVA5 detected a new object (Fig. 20, 5-d). AVA5 then regarded this object
as the target (object2) and generated agency2.

e: In this experiment, the object-priorities of both object1 and object2 were
equivalent. The agency restructuring, therefore, balanced the numbers of
the member-AVAs in agency1 and agency2.

f: Since object1 came close to object2, no AVA could distinguish these objects,
and object identification between two agencies was successful. Then, the
agency unification protocol merged agency2 into agency1.

7 In this experiment, the system gave object-priorities of 1.0 and 0.5 to the objects
detected first and second, respectively

AVA1: 1-a 1-b 1-c 1-d 1-e 1-f 1-g 1-h 1-i

AVA2: 2-a 2-b 2-c 2-d 2-e 2-f 2-g 2-h 2-i

AVA4: 4-a 4-b 4-c 4-d 4-e 4-f 4-g 4-h 4-i

AVA5: 5-a 5-b 5-c 5-d 5-e 5-f 5-g 5-h 5-i

AVA7: 7-a 7-b 7-c 7-d 7-e 7-f 7-g 7-h 7-i

AVA8: 8-a 8-b 8-c 8-d 8-e 8-f 8-g 8-h 8-i

AVA9: 9-a 9-b 9-c 9-d 9-e 9-f 9-g 9-h 9-i

Fig. 20. Experiment 1: Partial image sequences observed by AVAs.

(a) (b) (c) (d) (e) (f) (g) (h) (i)

time

Fig. 21. Experiment 1: Transitions of AVA roles and agency organization.

g: When the objects were separated, agency1 detected a ’new’ object. Then,
it activated the agency spawning protocol to generate agency2 again for
object2. At this time, agency2 read the information of object2 obtained in
the past and compared its target information with the read object informa-
tion (i.e., the past trajectory of object2) for temporal object identification.
Since this object identification was successful, the newly detected object
was regarded as object2.

5(m)

6(m)

Trajectory of Object2

Trajectory of Object1

AVA1

AVA5

AVA2 AVA10

AVA6

AVA3

AVA4

AVA7

AVA8

AVA9

P

0

2

4

6

8

10

0 10 20 30 40 50 60

(num)

(sec)

Freelancers
Members of Agency1

Members of Agency2

Detect Object2

Detect
Object1

5 15

 Object1 Exit

48

(a) Trajectories of the targets
(b) The number of AVAs performing each
role (‘search’ and ‘tracking of each ob-
ject’)

14 16 17 18
[sec]

AVA2

AVA4

AVA10

15

Freelancer

Member of
Agency1

Member of
Agency2

AVA5

(c) Histories of AVA roles

Fig. 22. Experiment 1: Experimental results.

h: Object1 was leaving the scene.
i: After agency1 dissolved, all the AVAs with the exception of AVA4 tracked

object2 as the member-AVAs of agency2.

Figure 22 (a) shows the trajectories of the targets, which were reconstructed
by the agencies. When the agency spawning was initiated for object2, tracking
of object2 was started at location P.

Figure 22 (b) shows the dynamic population changes of freelancer-AVAs, AVAs
tracking target1, and those tracking target2. The horizontal and vertical axes
indicate the time and the number of AVAs undertaking each role, respectively.
This graph shows the system states at intervals of 1 [sec]. Figure 22 (c) shows
the histories of the AVAs’ roles. The horizontal and vertical axes indicate the
time and the roles of the AVAs. Bumps in Fig. 22 (b) and (c) indicate the tem-
poral states of the system while each AVA was changing its role depending on
the target motions. These results indicated that the system as a whole worked
to cope with the dynamic situations in the scene by dynamically changing the
role of each AVA.

In the second experiment, we verified the efficacy of the task representation.

AVA1

AVA2

AVA8

Fig. 23. Experiment 2: Partial image sequences observed by AVAs. These images
were taken at intervals of about 1 [sec].

time

Fig. 24. Experiment 2: Transitions of AVA roles and agency formations.

Figures 23 and 24 show partial image sequences observed by AVA1, AVA2,
and AVA8 as well as the dynamic population changes of freelancer-AVAs and
member-AVAs. Figure 24 shows the role of each AVA and the formation of
each agency. Figures 25 (a), (b) and (c) show the results of the same anal-
yses as shown in Fig. 22 (a), (b) and (c), respectively. The system detected
object1 and object2 at 7 seconds and 28 seconds, respectively, and kept track-
ing both objects. Since two objects had different object-priorities, the numbers
of member-AVAs in agency1 and agency2 were different from each other.

As can be seen from these results, the dynamic interactions among AVAs and
agencies enable the system to persistently track multiple objects taking into
account the given task, i.e., the given task-constraint and object-priority.

Although the system always functioned as designed in all experiments, its
behavior was not entirely satisfactory depending on the given utility-function:

• If the weight constant αS is not determined appropriately, dynamic role
assignments among AVAs are disrupted; for example, an AVA that should
gaze at a target object is selected as a freelancer-AVA. That is, the system
changes its behavior sensitively depending on the relationship between the
search-value and the tracking value.

5(m)

6(m)

Trajectory of Object2

Trajectory of Object1

AVA1

AVA5

AVA2 AVA10

AVA6

AVA3

AVA4

AVA7

AVA8

AVA9

0

2

4

6

8

10

0 10 20 30 40 50 60

[number]

[sec]7 28

Freelancers
Members of Agency1

Members of Agency2

Detect Object2

Detect Object1

(a) Target motion trajectories
reconstructed by agencies

(b) The number of AVAs performing each
role (‘search’ and ‘tracking of each ob-
ject’)

27 29 30 31 [sec]

AVA2

AVA6

AVA9

28

Freelancer

Member of
Agency1

Member of
Agency2

AVA3

(c) Histories of AVA roles

Fig. 25. Experimental results 2: Experimental results.

• The tracking-value defined in Section 5.2 could select a pertinent agency
organization in most cases. The system, however, sometimes assigned an
unsuitable target to an AVA; for example, an AVA that should gaze at
object1 may be joined to an agency tracking object2. Such unsuitable target
assignment results not only in difficulty in acquiring high-resolution images
of a target but also in unstable system states, including the case in which an
AVA returns to an agency at quite frequent intervals. The target assignment
is strongly dependent on the definition of the tracking-value.

Based on these observations, it will be important in future studies to develop
a method for automatically designing the utility-function.

6 Concluding Remarks

In this paper, we proposed a system for real-time multi-target tracking employ-
ing a distributed active-camera system. The proposed system has the following

properties:

• Multiple parallel processes interact dynamically with each other, resulting
in a system that functions as a whole for cooperative tracking.

• The system is classified into three layers to efficiently establish various types
of object identification.
Intra-AVA layer: Perception, action and communication modules work

together as a single AVA by interacting dynamically with each other.
Intra-agency layer: A group of AVAs in the same agency share object

information to track a target.
Inter-agency layer: To adaptively restructure agencies taking into ac-

count target motions, the agencies exchange agency information with each
other.

• Employing the dynamic memory architecture achieves dynamic interactions
in each layer without synchronization. The system is endowed with high
reactivity.

These properties allow the system to be adaptable to complicated dynamic
situations in the real world.

While we proposed the three-layered interaction architecture for real-time co-
operative tracking, we consider the three-layered architecture to be adaptable
to other cooperative systems with autonomous agents:

Intra-AVA layer: To perform versatile and complex behaviors, an intelligent
autonomous agent (e.g., AVA) should consist of several functional modules
required for the task.

Intra-agency layer: Agents, all of which have the same purpose, should form
an agency to work together in a cooperative manner.

Inter-agency layer: For agencies to work cooperatively by negotiation, they
should interact with each other.

As mentioned above, our real-time tracking system can work under compli-
cated dynamic situations in the real world. We believe that this system rep-
resents fundamental technology to realize various real-world vision systems.
For the practical application of our system to real-world vision systems, other
issues in Computer Vision should be discussed. Here, we summarize several
aspects examined in the present study and discuss directions for future work.

1. The number of trackable targets:

To enable the system to track more targets than the number of AVAs, the
system can be modified such that an agency without any member-AVAs can
be generated. In this definition, it is necessary to consider how a vacant agency
can continuously obtain the target information? A vacant agency must receive
the object information detected by non-member-AVAs (i.e., freelancer-AVAs

and member-AVAs in other agencies). While a freelancer-AVA broadcasts the
information of the detected objects, a member-AVA sends the information only
to its agency manager. For the member-AVA to report the object information
to other agencies without increasing the network load, the message should
be sent only to agencies that require the information. Such a member-AVA
that sends information to other agencies is called a Supporter-AVA. While an
AVA can be a supporter-AVA for multiple agencies, it must belong to only one
agency as a member-AVA to avoid inconsistent camera-control from different
agencies.

2. Camera configuration planning:

There have been many studies to determine effective camera configuration
for a given task [25]. Similarly, the effective camera configuration for object
tracking should be planned depending on the given task.

3. Tracking with isolated camera configuration:

In all the experiments conducted in the present study, visual fields of all AVAs
overlapped with each other. In the real world, however, this situation does
not always hold true. To keep tracking a target even if cameras are embedded
sparsely in the scene, the system must employ not only the 3D trajectory of
the target but also other information for object identification:

• Appearance-based object identification is useful (e.g., [24]).
• In general, for object identification among widely distributed cameras, the

system searches through an enormous number of candidates for an optimal
solution. In [26], several constraints on the route and lapse assist object
identification in addition to the appearance information.

4. Capturing selective object image depending on the task:

The required information of a target varies depending on the task; e.g., whole
body, face, hands, etc. For example:

• To acquire the precise volumetric and appearance information of an object
(e.g., [27]), the system should control cameras to capture high-resolution
and meaningful object images.

• For individual identification, information on human face is significant. In
[28], the human head was detected based on the appearance and feature
models.

acknowledge This study is supported by PRESTO program of Japan Science
and Technology Agency (JST), National Project on Development of High Fi-
delity Digitization Software for Large-Scale and Intangible Cultural Assets,
and Grant-in-Aid for Scientific Research on Priority Areas, No.13224051.

References

[1] T. Matsuyama, “Cooperative Distributed Vision - Dynamic Integration
of Visual Perception, Action and Communication -,” in Proc. of Image
Understanding Workshop, pp.365–384, 1998.

[2] T. Kanade, “Cooperative multisensor video surveillance,” in Proc. of Image
Understanding Workshop, pp.3–10, 1997.

[3] S. Kamijo, Y. Matsushita, K. Ikeuchi, and M. Sakauchi, “Occlusion Robust
Tracking Utilizing Spatio-Temporal Markov Random Field Model,” in Proc. of
International Conference on Pattern Recognition 2000, Vol.1, pp142–147, 2000.

[4] C. Wren, A. Azarbayejani, T. Darrell, and A. Pentland, “Pfinder: Real-time
tracking of the human body,” IEEE Transaction on Pattern Analysis and
Machine Intelligence, 19(7), pp.780–785, 1997.

[5] D. Murray and A. Basu, “Motion tracking with an active camera,” IEEE
Transaction on Pattern Analysis and Machine Intelligence, 16(5), pp.449–459,
1994.

[6] Q. Cai and J. K. Aggarwal, “Tracking human motion in structured
environments using a distributed camera system,” IEEE Transaction on Pattern
Analysis and Machine Intelligence, 21(11), pp.1241–1247, 1999.

[7] J. MacCormick and A. Blake, “A probabilistic exclusion for tracking multiple
objects,” In Proc. of International Conference on Computer Vision, pp.572–578,
1999.

[8] I. Haritaoglu, D. Harwood, and L. S. Davis, “An appearance-based body model
for multiple people tracking,” in Proc. of 15th International Conference on
Pattern Recognition, Vol.4, pp.184–187, 2000.

[9] B. S. Rao and H. Durrant-Whyte, “A Decentralized Bayesian Algorithm for
Identification of Tracked Targets,” in IEEE Transaction on Systems, Man, and
Cybernetics, Vol.23, No.6, p.1683–1698, 1993.

[10] B. Horling, R. Vincent, R. Mailler, J. Shen, R. Becker and K. Rawlins and
Victor Lesser, “Distributed Sensor Network for Real Time Tracking,” in Proc.
of the 5th International Conference on Autonomous Agents, pp.417–424, 2001.

[11] A. Nakazawa, H. Kato, S. Hiura and S. Inokuchi, “Tracking multiple people
using Distributed Vision Systems,” in Proc. of IEEE International Conference
on Robotics and Automation 2002, pp.2974–2981, 2002.

[12] E. Borovikov and L. S. Davis, “A Distributed System for Real-time Volume
Reconstruction,” in Proc. of IEEE Workshop on Computer Architecture for
Machine Perception, pp.183–189, 2000.

[13] P. Rander, P.J. Narayanan, and T. Kanade, “Virtualized Reality: Constructing
Time-Varying Virtual Worlds from Real Events,” in Proc. of IEEE Visualization
’97, pp.277–283, 1997.

[14] D. R. Karuppiah, Z. Zhu, P. Shenoy, and E. M. Riseman, “A Fault-Tolerant
Distributed Vision System Architecture for Object Tracking in a Smart Room,”
in Proc. of International Conference on Computer Vision Systems 2001,
pp.201–219, 2001.

[15] T. Sogo, H. Ishiguro and M. M. Trivedi, “Real-time target localization and
tracking by N-ocular stereo,” in Proc. of IEEE Workshop on Omnidirectional
Vision, pp.153-160, 2000.

[16] N. Yoshida and T. Fuki, “Target Tracking Using Tuple-Space-Based Mobile
Agents,” in Proc. of 19th IASTED International Conference on Applied
Informatics, pp.389–393, 2001.

[17] H. Ishiguro, “Distributed Vision System: A Perceptual Information
Infrastructure for Robot Navigation,” in Proc. of IJCAI-97, Vol.1, pp.36–41,
1997.

[18] K. Toyama, J. Krumm, B. Brumitt and B. Meyers, “WallFlower: Principle and
Practice of Background Maintenance,” in Proc. of International Conference on
Computer Vision, pp.255–261, 1999.

[19] C. Stauffer and E. Grimson, “Adaptive background mixture models for real-
time tracking,” in Proc. of Computer Vision and Pattern Recognition, Vol.II,
pp.246–252, 1999.

[20] T.Matsuyama, et al., “Dynamic Memory:
Architecture for Real Time Integration of Visual Perception, Camera Action,
and Network Communication,” in Proc. of Computer Vision and Pattern
Recognition, pp.728–735, 2000.

[21] G. P. Stein, “Tracking from Multiple View Points: Self-calibration of Space and
Time,” in Proc. of Computer Vision and Pattern Recognition, Vol. I, pp.521–
527, 1999.

[22] N. Ukita and T. Matsuyama, “Real-time Multi-target Tracking by Cooperative
Distributed Active Vision Agents,” in Proc. of 1st International Joint
Conference on Autonomous Agents and Multi-Agent Systems, pp.829–838, 2002.

[23] D. L. Mills. “Internet time synchronization: the network time protocol,” IEEE
Transaction of Communications, 39(10), pp.1482–1493, 1991.

[24] M. Isard and A. Blake, “Condensation - conditional density propagation for
visual tracking,” International Journal of Computer Vision, 29(1), pp.5–28,
1998.

[25] K. A. Tarabanis, P. K. Allen, and R. Y. Tsai. “A survey of sensor planning
in computer vision,” IEEE Transaction on Robotics and Automation, 11(1),
pp.86–104, 1995.

[26] V. Kettnaker and R. Zabih. “Bayesian multi-camera surveillance,” in Proc. of
Computer Vision and Pattern Recognition, pp.253–259, 1999.

[27] T. Wada, X. Wu, S. Tokai, and T. Matsuyama. “Homography based parallel
volume intersection: Toward real-time volume reconstruction using active
cameras,” in Proc. of IEEE Workshop on Computer Architecture for Machine
Perception, pp.331–339, 2000.

[28] K. Yachi, T. Wada, and T. Matsuyama. “Human head tracking using adaptive
appearance models with a fixed-viewpoint pan-tilt-zoom camera,” in Proc. of
Fourth International Conference on Automatic Face and Gesture Recognition,
pp.150–155, 2000.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

