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Abstract—To analyze the performance of the formation [9], [10]. In [8], the notion ofstiffness and the relatedigidity
system in response to inputs/disturbances from outside ohe  indices are proposed to evaluate the rate of convergence
formation, we propose the notion ofreadiness, which describes to the original formation after the agents’ positions are

the initial conditions of the formation in terms of a certain set of . . .

input space. A higher readiness means better initial condibns perturbed. In [9], the‘approm mate manlpulabllllty of leader- )

of the system with better performance in maintaining or follower networks is proposed to characterize the effectiv
recovering the original formation shape against the exogesus  agent positions, topologies, and directions of leader'seno
inputs/disturbances. Optimization method based on calculs of  ments in terms of instantaneous response of the system to

variations is used in the analysis for deriving the optimalty the leader’s input. These notions are further unified in [10]
conditions. Simulations modeled on both unicycle and carifte .
as theresponsiveness.

robots demonstrate the features and the potential applicabns . .
of the proposed notion. However, the previously proposed notions strongly depend

on the assumption of single-integrator models. Meanwhile,
[. INTRODUCTION for real robotic applications, other states of agents, aagch

There have been a great number of studies on multi-agetgading directions of nonholonomic agents (e.g. unicyete a
team coordination and distributed sensor networks, whef&'-like models), have to be taken into account. For example
a decentralized control law was proposed to solve differeM(Nen @ multi-agent system tracks a moving point, one can
cooperative tasks, such as consensus, line deployment sp@Sk @ question such as “given topology and positions of
coverage, shape forming, and target converging [1], [7], [32 car-like multi-agent system, what are the optimal initial
[4] hgadings fo.r the agents to effectively respolnd_ to a _point

In particular, distance-based robot formation control-sudVith unpredictable movement?” Here, the existing indices,
cessfully achieves deployment of multi-agents (e.g. rs)ootSUCh as rigidity _and responsiveness, cannot l_Je used dqe to
and tracking of target in formation without using the knowl-the nonholonomity of the agents. As such, a different notion
edge of global coordinates [5], [6], [7]. Once desired disOf the performance measure is required. N
tances of selected agent pairs are given, the agents can forn? this paper, we address the optimal initial conditions of
a designed formation in a decentralized manner, where tRemulti-robot formation system by introducing the notion of
control laws for individual agents are obtained based on tHaeadiness, which interprets how well the system is prepared
negative gradient of a global index (sometimes referred #@r @ variety of external disturbances (also considered as
as formation constraint function, potential function, dge- ~ €X0genous inputs in the context of this paper). We illustrat
tension energy). A model-independent coordination sisate this notion by optimizing the set of initial orlentatlonshhrb
was proposed in [5], and is applied to the path foIIowindObO_tS’ so that they can _resp_ond to the external disturlsance
problem by using a nonphysical virtual leader that track§oMing from any direction in the plane and recover the
a desired trajectory. Stability properties for distanasdr formation with minimum difference in the shape change.
formation stabilization of both single and double integrat ~ The rest of the paper is structured as follows: Section I
agents are studied in [6], which is further extended tétroduces the problem Qf interest, formulates the apgroac
nonholonomic mobile robots in [7]. and proposes a new notion that can pe used to bette_r under-

Apart from the control law and stability of the system,Stand how to solve the _problem. Section |li and Section IV
the agents’ initial conditions, as one important aspect iRF€Sents two case studies of th_e unlcycl_e and_ car-I|I§e robot
multi-agent systems, also determine the overall perfonrmanmModels that illustrate the meaning of this notion, with the
of the mission to accomplish. Especially, in distance-gaseimulation results shovyn in Section V. Finally, Section VI
formation control, the relation between the response of trgPncludes the paper with a few remarks and future works.

system and some conditions such as agents’ positions and

. ) Il. PROBLEM STATEMENT AND READINESS
network topologies has attracted attention of researdBgrs
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- /.\"’ following cost functional is defined for readiness:

FATN / NN J(zg) = / / L(z(t),u)dt + U(z(T),u) | du. (4)

S N N v \Jo

o \‘ ________ ) “ . . .

P Rt ] J(xo) punishes the general integral and terminal costs under

L] //’ N S inputsu € U. If J(x) is small, then the system with the

;‘/ \ // corresponding:y has high readiness. In the convoy protec-
“Ij\\\ \\ S tion scenario, this means the formation is better prepared

e \{ for external disturbances and recovers faster to the aigin

shape.

Fig. 1. Convoy Protection Scenario; blue discs are the afgcyobots, To Optimize the readiness. the optimal initial conditim}w

with their headings indicated by the red arrows; the red tlisihe middle

is the object to protect; blue dashed lines represent coriwaiion links. is given by:
xy = arg minJ(zo)
o
Suppose the dynamics of the agents are given by: st @(t) = f(x(t),u)
i(t) = fa(t), w), (1) 20 = @

We take the advantage of the integration formwofin
5o (4), and therefore, using calculus of variations, wetlyet
ngt-order necessary condition (FONC) as (see Appendix I)

with the initial statesxz(0) = =z, whereu € U is the
exogenous input to the formation system, usually appli
onto the leader. For instance, the system dynamics can

separated as: 97 = / AT(0,u)du =0 (5)
(0] [ (o) o v
. _|xf o Flx
t)=|. = , 2
@(t) [wl(t)} |:fl(xl7u):| (2)  where
. o : oL’ af "

where the input: has no direct influence on the followers. | A(t,u) = o (x(t),u) — Iz ((t), u)A(t, u)
Now the problem is to find the optimal initial conditiar v . . (6)
of the system in terms of how well the system responds t ANT,u) = ov (@(T), )
arbitrary inputu, € U, wherew acts as a constant exogenous ’ 0x(T) ’

input in a given short-term interval, 7). In other words, |« e costate c RN

we W.Olt“d :c'ke tto Zef. how the tottal_ sy;‘zm s prtipare(; for In the rest of the paper, we analyze the optimal readiness
a variety of perturbation, parameterizeddygiven through - ot nonholonomic multi-robot formation for such a convoy

the leader. protection scenario shown in Fig. 1. This problem is inter-

To illustrate this problem, we consider an eXemIOIar¥Jreted as to solve the readiness for initial headings of the

scenario where a group of mobile robots perform convoy, jviia robots in the convoy, supposing their initial pasis

protection of an object, as shown in Fig. 1. The robots a@atisfy the formation shape
evenly located on a circle, with the object of interest at

its centroid. In order to protect this object, the convoy is [1l. SYSTEM MODELING

expected to move as quickly as possible to recover the shapezefore we can find the optimal initial headings, we need
of even distribution on a circle with the object still at itStq introduce our control strategy, which is often referred t
centroid, in case that the object moves in some directiogs edge-tension energy based formation control.

on the plane. In order to characterize this ability of the

formation, we introduce the notion calledadiness, which ~A. Edge-Tension Energy [10]

is defined in the following. Consider the graple = (V,E) for Fig. 1, whereV =
First, we consider the standard cost functional used fgk,,... vy} denotes the set of robots and object in the
optimal initial condition problem in the form: graph, anE C VxV is the set of edges, indicated by the blue

dashed lines. The cardinality & is |E| = M, which is the

T
J(zo,u) = / L(z(t),u)dt + V(z(T),u), (3) humber of edges in thg graph. Now we intr_odu_ce a general
0 edge-tension energy similar to the formulation in [10]:

where L(z(t),u) is a cost function on states and input T

U (z(T),u) is a terminal cost function. For instance, it can E(x) = 3 ZZEij(xi(t),xj (t)), 7
be used to punish the difference between desired formation i=1 j=1

shape and the shape at tirfie where

Now we define thereadiness by taking the integral (pa-
. . . = 1 2
rameterized family) of cost functionals/ (o, u)|u € U} to By, a)) = 4 2 (eij(llzi —4l1))" {vi,v;} €E @®
evaluate the overall response of the system. Specifichby, t e 0 otherwise



Here,e;; : Ry — R is a strictly increasing, twice differ- In terms of the followers, the dynamics can be derived as:
entiable function such that;;(d;;) = 0 ande;;(d;;) # 0,

.
whered;; > 0 is the desired distance between agenasnd ip = _B_E (z) = —((Dle(:c)DT) ® I)z, (13)
J» andeg; (r) = deji;'r(r). A typical example ofe;; is Oxy

eii(||lzi — z5)]) = cij - (||zi — 24]| = dij) (9) WhereDy £ [In,|0]D (the last row ofD is removed).

) i ) ] Now consider the unicycle model given by:
wherec;; > 0 is a weight variable assigned to the commu-

nication link between agentsand j. — {COS 9i] v,
Let D(G) € {—1,0,1}N*M pe an incidence matrix [11] Y [sing; | (14)
of graphG. The first and the second derivatives of the edge- 0; = w;

tension energy is given by the followings (see [9] for the _ i ) _
details of the derivation): whered); is the heading of agent v; andw; are the linear

T and angular velocities, respectively. Due to the nonhatuino
OE(x) (DWy(2)DT) @ L))z constraints of the unicycle model, we will control the off-
ox ’ center pointz; (in order to have complete controllability of

O*E(x the model) defined as:
T2~ (DWi@DT) @ L+ R Walx)R(2) ) def
N cos0;
where W, (x) and Wa(z) are M x M diagonal matrices, Ti=xi+e¢ Lin@-] ; (15)
whose diagonal elements are ’
wheree > 0. Taking time derivative, we have
W@, = wig (| —25.0), - , -
w: . Ti — X L — S1mo; '.: cost; —sSInv; (o
W, — s el R vl L el B D
||‘T7:k - x]k” ]
k=1,.,M, {v,v; }:edgek, Therefore the control inpufw;,w;] to achievez; = p; is
s dZey(r) given by

where, lettinge;; (1) premt ; " 07
- , vi| _ cos0; sin 0; _ | P10 )

’ T
(& B e+ (el (D) — exy(r)ely (r) - where

K dr r? p1(0;) £ [cos 0;,sin0;] ", po(6;) £ [—sin 6y, cos 0] "
Here we assume that the indices of the edges are consistent _ o _
betweenW, () and the incidence matri¥), and between Substituting (17) into the original unicycle model (14), we
Wa(z) and the rigidity matrixR, respectively. have the following closed-loop system
w*Rte;réar:I%]%: If all the desired distances are satisfiedrat i = p1(6:)v; = pr(0:)p1(8;)T ()

! Oz

=0 and
0; = EP2(9i)TMz‘(I)

O*FE . P

S| =R Wa(a)R@"). (10 o .

0x? | . With the definition given in Eq. (12) for the control input
By the definition of the functiom,; and the fact thatjz; — #i(z), the follower system can be described as follows:
zj|| = di; > 0 ate = z*, Wa(z*) is always positive definite. LOET

Example 1: If the edge-tension energy is given by (9), |4y = fu(2,0;) = —Pi(07)P1(6;) (z)

o
then e;(r) = cij, e;(r) = 0, [Wl(:zr)]Qkk = C%kjk(l — . 1 _OET o (19)
dikjk/HIik - xjk”)’ and [WQ(x)]kk = Cikjkdikjk/HIik - of = fg(d?,@f) = __P2(9f) (9— (I)
z;,.||>. Hence, when the desired distances are satisfied at € Ty
x = z*, the k-th diagonal elements of the weight matricesyhere 6y = [61,...0x,]7, and the matricesP;, P, €
become R2Ns*Ns are defined as
2
Cigj .
W1 (a")ik = 0, [Wala™)|i = (d—) L oy

TkJk A P2

B. Formation Control with Unicycle Models P (0r) = . , (20)

Edge-tension energy based formation control was ap- ' pi(On,)
. . . . . . J f
plied to agents with single integrator dynamics in [9]. The )
formation control was realized according to the followingVherej = 1,2. Here, we suppose that the movement of
dynamics: the leader (i.e. object) is given externally. In particulie
. control law given in Eq. (19) locally asymptotically stabés
A OF (z) = — Z wii(z; — ;). (12 the formation to the desired shape. This is formulated in the

B = — . o
Ox; following proposition.

1i()
JEN;



Y, / coordinate of the robot in global frame, located at the mid-
/ point of the rear-wheel axlg); is the orientation; and. is
the distance between front and rear wheel axle. Note that the
4 first two equations represent the nonholonomic constraints
9 the car-like mobile robot. And because of the nonholonomity
3 we control the off-center point;, defined by [12]:

SR s Tt Leos(O) s ecosli =) oy,
% "7 gy + Lsin(0;) + esin(0; — ¢) |’

X, where -3 < ¢ < 3 is the off-center angle, and > 0.
X > Similar to the analysis on unicycle model, we can write the
Fig. 2. Model of car-like mobile robot car-like robot dynamics in Eq. (23) for the follower system

in stacked form:

.. . . e . Ty = gw(xvef)
Proposition 1 (Unicycle formation stabilization): The 1 or T
formation system with unicycle model given in Eq. (14) is s PPy — (=
locally stable under the control law given in Eq. (19). . 1 + €cos(¢) Oy (25)
Proof: Consider the candidate Lyapunov function: Oy = ge(z,0f) -
R 1 + OFE
_ N — - N
V(z) = E(x), 1+ ecos(®) 2(67) Ox s (@)
where E(z) is the edge-tension energy defined in Eq. (7)where P; € R2N*Ns js defined as:
Differentiating V in time and we get:
p3(61)
. . OE OE OB T p3(62)
=F=_—i;=———P(0;)P(0;)" =— Py(0;) & 26
4 27 T T gy 1(07)P1(0r) 92, 5(0r) ;. (26)
=—||P(0 TOE " <0 D p3(On,)
=~ | Pa(0y) dxy = and

Therefore, the control law given in Eq. (19) ensures stgbili p3(6:) = [cos(0;) + ecos(6; — ¢),sin(6;) + esin(6; — ¢)] .
of the system. | (27)
While in general the control law in Eqg. (19) may drive the We also suppose that the movement of the leader (object) in
system toward a local equilibrium point, we here considehe centroid is given externally. In particular, this camtaw
only small perturbations of the agents from their desirediven in Eq. (25) locally asymptotically stabilizes the-ti&e
formation such that the desired distances are recoveradpot formation to the desired shape, which can be proved
where the desired formation can be defined by theXset  similarly to that of Proposition 1, where the same Lyapunov
X2 {2 € RV |||; — ol = dijs v} €EL (22) candidate is used. We omit the derivation for brevity.

IV. READINESSOPTIMIZATION

Following the scenario shown in Fig. 1, and the system

namics with unicycle model given in Eq. (14) and control
w given by Eq. (19), suppose the system initial configura-
on satisfies the desired distances with

Based on Remark 1 and Example 1, we knipw — z;|| =

dij = V = 0. Therefore, the sek* is one equilibrium set. d
This proposition shows that the distances between trr

agents will be driven to the desired ones (if initial stateﬁ

are in the neighborhood of the s&t*), although the control

law (19) has no guarantee for the convergence of the head- 7= o* — [IZ] ’
ings of the agents. In the following, we are going to design Ty
a similar control law for the car-like robot models. where ||lz; — ;|| = di;j,¥{vi,v;} € E. Note that the edge

set E represents the communication link shown in Fig. 1,
which does not change in time. Lét; be the instantaneous
Consider the vehicle in the formation as a standard reamovement of the leader, given by:

C. Formation Control on Car-like Mobile Robots

wheel drive, front-wheel steerable car-like mobile robot, cos 0

whose kinematic equation is given by: dxy = [sin 9;} : (28)
f?li(t) Cf)Sei(t) wherey > 0, and 6, is the direction of the movement.
Toi(t)| = | sindi(t) | wi(D), (23)  suppose that the leader will not move after this displacémen
0:(t) [tan B;(t)]/ L ie.,

wherew; is the translational driving speed; is the equiv- . 0 s dx ¢ (t)

alent steering angle of the front wheels:;, z2;) is the 2(0) = 2"+ dxe|”’ o(t) =" + dxp |’ (29)



wheredx s (t) £ xy(t) — . 08
We are going to analyze the readiness of the system,
namely the set of initial headings of all followers, asstazia

with the cost given below:

05
0.4
03

J(xo):/U\IJ(x(T),u)du, (30)

where we letL = 0 in Eq. (4), since we only focus on the
final formation shape for simplicity. An example ¢fx, )

and ¥(z,u) is & = —%—fT(x,u) and E(x(T),u), respec- 0 o
tively. The exogenous input is defined as the direction of 08 " ' 6
the movement of the object in the centroid, i.e. Terminal Time T 2 o058 o (rad)
Fig. 3. Edge-tension energy distribution with uniform hiegg 6, is used
= 0;, andU £ [0, 27]. in Eqg. (28) to generate instantaneous movement of the leathéch is also

considered as the exogenous input.
In this case,J(z() is an index to measure the change of edge-

tension energyr in the system under all the givene U.
The optimal initial condition problem in terms of optimiz-
ing the readiness of the system depicted in Fig. 1 is given

by:

06

2m
min J(6o) :/ U (z(T), u)du (31) 06
0o 0 w 0.3
. ) goay
s.t. T = [xf:| = |:fm(ar,9j,u):| i 0
z 0 02+
2y(0) =2}, 0¢(0) =00 o
x1(0) = dxy,  6,(0) =6, ° os ] 6
where U (x(T),u) = E(x(T),u). Using calculus of varia- ramatiner 2 276 a9
tions, we get the EONC as Fig. 4. Edge-tension energy distribution with optimal iaditheading
a.J 2 -
EYR A (0,u)du =0, (32)  results shown in this section apply to both unicycle and car-
890 0 . . . .
like models, since the control law itself is based on the same
where formulation of edge-tension energy introduced in Sectlbn |
- of " :
Alt,u) = T oz (@(t), w)A(t, u) (33a) Fig. 3 shows distribution of the edge-tension enefgy
ow T when the initial headings of the followers are uniformly
MT,u) = 92(T) (z(T),u) (33b) aligned asf, = 0. The local minima shown in the figure

indicate that the formation system is “ready” for the le&ler
Specifically, the derivation of FONC for both unicycle andmovement in the direction of;, = 0 and 6, = =, but is
car-like models can be found in Appendix II. not “ready” when the leader moves in any other direction.
Therefore, the overall “readiness” is low in terms of thetcos
J given in Eq. (31) (which is also shown in Fig. 5).
Solving the optimal control problem given in Eq. (31) Fig. 4 illustrate the edge-tension energy distribution whe
numerically in MATLAB® based on the following gradient initial headings of the followers are placed with the salnti

V. RESULTS

descent principle: to the optimal control problem given in Eqg. (31). Clearly,
o7 T the energyF is decreased along all directions of the leader’s
i) = glF) — Naa (34) movement. This means that the system with the optimal set
0

of headings has high readiness.

where n is the step size and: is the iteration count. Fig. 5 depicts the cosf given in Eq. (31) under different
Although the method of gradient descent does not give globsaéts of initial headings, which also indicates the readines
solution, we noticed that through multiple simulationsg th of the system. The curve marked “Optimal” shows the cost
“Tangential” setup of the headings is more probable to bé with optimal initial headings, which is slightly smaller
the optimal solution. Therefore, our initial guess is seb& than the one with “Tangential” after approximately 0.2 time
“Tangential”, where all follower headings are tangentw@l t units. An interesting observation is that the uniform and
the circle of convoy. If the initial guess is far from tangaht random headings result in a very low cost in the beginning
the result might be some other local minimum. Note that thef the formation recovering. This comes from the fact that
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Suppose that a small change, + €h, in the initial condi- APPENDIXII

tion causes a small change(t, u) + en(t,u), in the state FONCFORUNICYCLE AND CAR-LIKE MODELS
trajectory, where: > 0. Then, A. Unicycle Models

J(xo + €h) Based on the dynamics of unicycle models given in
. Eg. (19), dynamics of the costatt = [A\/,\J]T €
:/ / {L(a:(t ) + en(t, u), u) R?N7*Ns can be described as:
oe | - To0 = 2E 100, (Te) =0  (a1)
At ) (F (@l w) + en(t,u),u) = (@ + i) ) pat AT = gy (DO A 00 =
T
+w<x<T,u>+en<T,u>,u>] du. @6) i, Ok, 0y
(9.%‘f aff
. . . . . . _O’E
Due to the linearity of integration, the following differem = 5 2 <P1P1 Az + PQ/\e) (42)
can be calculated with the Taylor expansionsioff, and
v 1 6fm 6f0
. . A T T
J(xo + €h) — J(x0) oF 1
T oL of = {3_] ((plp2 + PP A, — —Plx\g) (43)
= / / {_en(ta u) + /\(t7 U)_Gn(ta u) v ¢
vlJo L0z Oz where
- 8E -
—e(t, u)ﬁ}dt + (Q)—\Ijen(T7 u) | du + ofe) D
ox 1
OFE
_ of [B_E} £ Dy . (44)
_G/Ul/o {a_ (t,u) + A(t, u)axn(t,u) 9es
+An(t,u } (T, u) + A(0,u)n(0, u) oL
L oz, |
+ A4 (T, w) | du + o(e) (37) Specifically, the first order necessary condition becomes:
8x(T, u) ’ ’ a.J T 27
. . . v :/ o (0,6;)do; = 0. (45)
where the last equality follows from integration by parts, 90 0

B. Car-like Models

T
/ At w)ndt = Mt w)n(t,u))d — / A(t,u)dt. (38) Based on the dynamics of car-like robot models derived in
0 0 Eq. (25), dynamics of the costage= ¢/, &) |7 € R2Ns <Ny
Dividing (37) by e and taking the limit — 0, we obtain the can be described as:
directional derivative

OE T
j j 5 (T 91) 8 ( (T)7 el)v fe(T, 91) =0 (46)
5j(1’0; h) = 1% J(‘TO + 6}? — J(‘TO) T
L 6fm i 6f9
:/ / {8_L+/\ﬁ+/\}77(t,u)dt 51——817 & — 17
v|Jo 0z Ox o
ov o2 (P3P1sz + P2&p) (47)
YT o
' {&v(T, g A u)} i u)] du or, o
+/ A0, u)n(0, u)du. (39) & = __” €y — _9 &
U
OFE
Combining the costate dynamics from Eq. (6), we have =1 {a—fff] ((P3P2T + PyP )¢, — Pi&) (48)
:co, /)\ou OUdU—</)\Oudt> where 1
(40) "= Tiecostg) 1T PelOn) - ePa0 =),

where we used the fag{0, u) = h, i.e., the change of initial Specifically. the first ord dition b )
value o + h corresponds ta:(0, ) + en(0, u). Noting the pecifically, the first order necessary condition becomes:

A oJ . . a.J T 2T
fact 0.J(xo; h) = 8_h’ the first-order necessary condition — = £9(0,0,)d0; = 0. (49)

90,
is given by Eq. (S)x.0 0 0



