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Abstract— To analyze the performance of the formation
system in response to inputs/disturbances from outside of the
formation, we propose the notion ofreadiness, which describes
the initial conditions of the formation in terms of a certain set of
input space. A higher readiness means better initial conditions
of the system with better performance in maintaining or
recovering the original formation shape against the exogenous
inputs/disturbances. Optimization method based on calculus of
variations is used in the analysis for deriving the optimality
conditions. Simulations modeled on both unicycle and car-like
robots demonstrate the features and the potential applications
of the proposed notion.

I. I NTRODUCTION

There have been a great number of studies on multi-agent
team coordination and distributed sensor networks, where
a decentralized control law was proposed to solve different
cooperative tasks, such as consensus, line deployment, space
coverage, shape forming, and target converging [1], [2], [3],
[4]

In particular, distance-based robot formation control suc-
cessfully achieves deployment of multi-agents (e.g. robots)
and tracking of target in formation without using the knowl-
edge of global coordinates [5], [6], [7]. Once desired dis-
tances of selected agent pairs are given, the agents can form
a designed formation in a decentralized manner, where the
control laws for individual agents are obtained based on the
negative gradient of a global index (sometimes referred to
as formation constraint function, potential function, or edge-
tension energy). A model-independent coordination strategy
was proposed in [5], and is applied to the path following
problem by using a nonphysical virtual leader that tracks
a desired trajectory. Stability properties for distance-based
formation stabilization of both single and double integrator
agents are studied in [6], which is further extended to
nonholonomic mobile robots in [7].

Apart from the control law and stability of the system,
the agents’ initial conditions, as one important aspect in
multi-agent systems, also determine the overall performance
of the mission to accomplish. Especially, in distance-based
formation control, the relation between the response of the
system and some conditions such as agents’ positions and
network topologies has attracted attention of researchers[8],
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[9], [10]. In [8], the notion ofstiffness and the relatedrigidity
indices are proposed to evaluate the rate of convergence
to the original formation after the agents’ positions are
perturbed. In [9], theapproximate manipulability of leader-
follower networks is proposed to characterize the effective
agent positions, topologies, and directions of leader’s move-
ments in terms of instantaneous response of the system to
the leader’s input. These notions are further unified in [10]
as theresponsiveness.

However, the previously proposed notions strongly depend
on the assumption of single-integrator models. Meanwhile,
for real robotic applications, other states of agents, suchas
heading directions of nonholonomic agents (e.g. unicycle and
car-like models), have to be taken into account. For example,
when a multi-agent system tracks a moving point, one can
ask a question such as “given topology and positions of
a car-like multi-agent system, what are the optimal initial
headings for the agents to effectively respond to a point
with unpredictable movement?” Here, the existing indices,
such as rigidity and responsiveness, cannot be used due to
the nonholonomity of the agents. As such, a different notion
of the performance measure is required.

In this paper, we address the optimal initial conditions of
a multi-robot formation system by introducing the notion of
Readiness, which interprets how well the system is prepared
for a variety of external disturbances (also considered as
exogenous inputs in the context of this paper). We illustrate
this notion by optimizing the set of initial orientations ofthe
robots, so that they can respond to the external disturbances
coming from any direction in the plane and recover the
formation with minimum difference in the shape change.

The rest of the paper is structured as follows: Section II
introduces the problem of interest, formulates the approach
and proposes a new notion that can be used to better under-
stand how to solve the problem. Section III and Section IV
presents two case studies of the unicycle and car-like robot
models that illustrate the meaning of this notion, with the
simulation results shown in Section V. Finally, Section VI
concludes the paper with a few remarks and future works.

II. PROBLEM STATEMENT AND READINESS

FORMULATION

Given a group ofN agents, withxi(t) ∈ R
d being the

state of agenti at time t, i = 1, . . . , N . Let the agent with
the last index be assigned as the leader and the remaining
Nf = N −1 agents as followers, i.e.,xl , xN is the leader’s
state, andxf = [x⊤

1 , . . . , x⊤
Nf

]⊤ are the follower states. The
overall system configuration of the network can be denoted
by x , [x⊤

1 , ..., x⊤
N ]⊤ = [x⊤

f , x⊤
l ]⊤.



Fig. 1. Convoy Protection Scenario; blue discs are the unicycle robots,
with their headings indicated by the red arrows; the red discin the middle
is the object to protect; blue dashed lines represent communication links.

Suppose the dynamics of the agents are given by:

ẋ(t) = f(x(t), u), (1)

with the initial statesx(0) = x0, where u ∈ U is the
exogenous input to the formation system, usually applied
onto the leader. For instance, the system dynamics can be
separated as:

ẋ(t) =

[

ẋf (t)
ẋl(t)

]

=

[

ff(x)
fl(xl, u)

]

, (2)

where the inputu has no direct influence on the followers.
Now the problem is to find the optimal initial conditionx∗

0

of the system in terms of how well the system responds to
arbitrary inputu ∈ U , whereu acts as a constant exogenous
input in a given short-term interval[0, T ]. In other words,
we would like to see how the total system is prepared for
a variety of perturbation, parameterized byu, given through
the leader.

To illustrate this problem, we consider an exemplary
scenario where a group of mobile robots perform convoy
protection of an object, as shown in Fig. 1. The robots are
evenly located on a circle, with the object of interest at
its centroid. In order to protect this object, the convoy is
expected to move as quickly as possible to recover the shape
of even distribution on a circle with the object still at its
centroid, in case that the object moves in some direction
on the plane. In order to characterize this ability of the
formation, we introduce the notion calledreadiness, which
is defined in the following.

First, we consider the standard cost functional used for
optimal initial condition problem in the form:

J̃(x0, u) =

∫ T

0

L(x(t), u)dt + Ψ(x(T ), u), (3)

where L(x(t), u) is a cost function on states and inputu.
Ψ(x(T ), u) is a terminal cost function. For instance, it can
be used to punish the difference between desired formation
shape and the shape at timeT .

Now we define thereadiness by taking the integral (pa-
rameterized family) of cost functionals{J̃(x0, u)|u ∈ U} to
evaluate the overall response of the system. Specifically, the

following cost functional is defined for readiness:

J(x0) =

∫

U

(

∫ T

0

L(x(t), u)dt + Ψ(x(T ), u)

)

du. (4)

J(x0) punishes the general integral and terminal costs under
inputs u ∈ U . If J(x0) is small, then the system with the
correspondingx0 has high readiness. In the convoy protec-
tion scenario, this means the formation is better prepared
for external disturbances and recovers faster to the original
shape.

To optimize the readiness, the optimal initial conditionx∗
0

is given by:

x∗
0 = arg min

x0

J(x0)

s.t. ẋ(t) = f(x(t), u)

x(0) = x0.

We take the advantage of the integration form ofu in
Eq. (4), and therefore, using calculus of variations, we getthe
first-order necessary condition (FONC) as (see Appendix I)

∂J

∂x0
=

∫

U

λ⊤(0, u)du = 0 (5)

where


















λ̇(t, u) = −
∂L

∂x

⊤

(x(t), u) −
∂f

∂x

⊤

(x(t), u)λ(t, u)

λ(T, u) =
∂Ψ

∂x(T )

⊤

(x(T ), u)

(6)

with the costateλ ∈ R
dN .

In the rest of the paper, we analyze the optimal readiness
of nonholonomic multi-robot formation for such a convoy
protection scenario shown in Fig. 1. This problem is inter-
preted as to solve the readiness for initial headings of the
mobile robots in the convoy, supposing their initial positions
satisfy the formation shape.

III. SYSTEM MODELING

Before we can find the optimal initial headings, we need
to introduce our control strategy, which is often referred to
as edge-tension energy based formation control.

A. Edge-Tension Energy [10]

Consider the graphG = (V, E) for Fig. 1, whereV =
{v1, . . . , vN } denotes the set of robots and object in the
graph, andE ⊆ V×V is the set of edges, indicated by the blue
dashed lines. The cardinality ofE is |E| = M , which is the
number of edges in the graph. Now we introduce a general
edge-tension energy similar to the formulation in [10]:

E(x) =
1

2

N
∑

i=1

N
∑

j=1

Eij(xi(t), xj(t)), (7)

where

Eij(xi, xj) =

{

1
2 (eij(||xi − xj ||))

2
{vi, vj} ∈ E

0 otherwise.
(8)



Here, eij : R+ → R is a strictly increasing, twice differ-
entiable function such thateij(dij) = 0 and e′

ij(dij) 6= 0,
wheredij > 0 is the desired distance between agentsi and
j, ande′

ij(r) ,
deij(r)

dr
. A typical example ofeij is

eij(||xi − xj ||) = cij · (||xi − xj || − dij) , (9)

wherecij > 0 is a weight variable assigned to the commu-
nication link between agentsi andj.

Let D(G) ∈ {−1, 0, 1}N×M be an incidence matrix [11]
of graphG. The first and the second derivatives of the edge-
tension energy is given by the followings (see [9] for the
details of the derivation):

∂E(x)

∂x

⊤

= ((DW1(x)D⊤) ⊗ Id)x,

∂2E(x)

∂x2
= (DW1(x)D⊤) ⊗ Id + R(x)⊤W2(x)R(x)

where W1(x) and W2(x) are M × M diagonal matrices,
whose diagonal elements are

[W1(x)]kk = wikjk
(||xik

− xjk
||),

[W2(x)]kk =
w′

ikjk
(||xik

− xjk
||)

||xik
− xjk

||
,

k = 1, ..., M, {vik
, vjk

} : edgek,

where, lettinge′′
ij(r) ,

d2eij (r)
dr2 ,

wij(r) ,
eij(r)e′

ij(r)

r
,

w′
ij(r) ,

dwij

dr
=

{e′
ij(r)2 + eij(r)e′′

ij(r)}r − eij(r)e′
ij(r)

r2
.

Here we assume that the indices of the edges are consistent
betweenW1(x) and the incidence matrixD, and between
W2(x) and the rigidity matrixR, respectively.

Remark 1: If all the desired distances are satisfied atx =
x∗, then ∂E

∂x

∣

∣

x∗
= 0 and

∂2E

∂x2

∣

∣

∣

∣

x∗

= R(x∗)⊤W2(x∗)R(x∗). (10)

By the definition of the functioneij and the fact that||xi −
xj || = dij > 0 atx = x∗, W2(x∗) is always positive definite.

Example 1: If the edge-tension energy is given by (9),
then e′

ij(r) = cij , e′′
ij(r) = 0, [W1(x)]kk = c2

ikjk
(1 −

dikjk
/||xik

− xjk
||), and [W2(x)]kk = c2

ikjk
dikjk

/||xik
−

xjk
||3. Hence, when the desired distances are satisfied at

x = x∗, the k-th diagonal elements of the weight matrices
become

[W1(x∗)]kk = 0, [W2(x∗)]kk =

(

cikjk

dikjk

)2

. (11)

B. Formation Control with Unicycle Models

Edge-tension energy based formation control was ap-
plied to agents with single integrator dynamics in [9]. The
formation control was realized according to the following
dynamics:

µi(x) , ẋi = −
∂E

∂xi

⊤

(x) = −
∑

j∈Ni

wij(xi − xj). (12)

In terms of the followers, the dynamics can be derived as:

ẋf = −
∂E

∂xf

⊤

(x) = −((Df W1(x)D⊤) ⊗ I2)x, (13)

whereDf , [INf
|0]D (the last row ofD is removed).

Now consider the unicycle model given by:

ẋi =

[

cos θi

sin θi

]

vi

θ̇i = ωi

, (14)

whereθi is the heading of agenti, vi andωi are the linear
and angular velocities, respectively. Due to the nonholonomic
constraints of the unicycle model, we will control the off-
center point̃xi (in order to have complete controllability of
the model) defined as:

x̃i = xi + ǫ

[

cos θi

sin θi

]

, (15)

whereǫ > 0. Taking time derivative, we have

˙̃xi = ẋi + ǫ

[

− sin θi

cos θi

]

θ̇i =

[

cos θi − sin θi

sin θi cos θi

] [

vi

ǫωi

]

(16)

Therefore the control input[vi, ωi] to achieve ˙̃xi = µi is
given by
[

vi

ωi

]

=

[

cos θi sin θi

− 1
ǫ

sin θi
1
ǫ

cos θi

]

µi =

[

p1(θi)
⊤

1
ǫ
p2(θi)

⊤

]

µi, (17)

where

p1(θi) , [cos θi, sin θi]
⊤, p2(θi) , [− sin θi, cos θi]

⊤.

Substituting (17) into the original unicycle model (14), we
have the following closed-loop system

ẋi = p1(θi)vi = p1(θi)p1(θi)
⊤µi(x)

θ̇i =
1

ǫ
p2(θi)

⊤µi(x)
. (18)

With the definition given in Eq. (12) for the control input
µi(x), the follower system can be described as follows:














ẋf = fx(x, θf ) , −P1(θf )P1(θf )⊤ ∂E

∂xf

⊤

(x)

θ̇f = fθ(x, θf ) , −
1

ǫ
P2(θf )⊤ ∂E

∂xf

⊤

(x)

(19)

where θf = [θ1, ..., θNf
]⊤, and the matricesP1, P2 ∈

R
2Nf ×Nf are defined as

Pj(θf ) ,











pj(θ1)
pj(θ2)

. . .
pj(θNf

)











, (20)

where j = 1, 2. Here, we suppose that the movement of
the leader (i.e. object) is given externally. In particular, the
control law given in Eq. (19) locally asymptotically stabilizes
the formation to the desired shape. This is formulated in the
following proposition.
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Fig. 2. Model of car-like mobile robot

Proposition 1 (Unicycle formation stabilization): The
formation system with unicycle model given in Eq. (14) is
locally stable under the control law given in Eq. (19).

Proof: Consider the candidate Lyapunov function:

V (x) = E(x),

whereE(x) is the edge-tension energy defined in Eq. (7).
Differentiating V in time and we get:

V̇ = Ė =
∂E

∂xf

ẋf = −
∂E

∂xf

P1(θf )P1(θf )⊤ ∂E

∂xf

⊤

= −

∥

∥

∥

∥

∥

P1(θf )⊤ ∂E

∂xf

⊤
∥

∥

∥

∥

∥

2

≤ 0.

(21)

Therefore, the control law given in Eq. (19) ensures stability
of the system.
While in general the control law in Eq. (19) may drive the
system toward a local equilibrium point, we here consider
only small perturbations of the agents from their desired
formation such that the desired distances are recovered,
where the desired formation can be defined by the setX∗:

X∗ , {x ∈ R
2N |‖xi − xj‖ = dij , {vi, vj} ∈ E}. (22)

Based on Remark 1 and Example 1, we know‖xi − xj‖ =
dij ⇒ V̇ = 0. Therefore, the setX∗ is one equilibrium set.

This proposition shows that the distances between the
agents will be driven to the desired ones (if initial states
are in the neighborhood of the setX∗), although the control
law (19) has no guarantee for the convergence of the head-
ings of the agents. In the following, we are going to design
a similar control law for the car-like robot models.

C. Formation Control on Car-like Mobile Robots

Consider the vehicle in the formation as a standard rear-
wheel drive, front-wheel steerable car-like mobile robot,
whose kinematic equation is given by:





ẋ1i(t)
ẋ2i(t)

θ̇i(t)



 =





cos θi(t)
sin θi(t)

[tan βi(t)]/L



 vi(t), (23)

wherevi is the translational driving speed;βi is the equiv-
alent steering angle of the front wheels;(x1i, x2i) is the

coordinate of the robot in global frame, located at the mid-
point of the rear-wheel axle;θi is the orientation; andL is
the distance between front and rear wheel axle. Note that the
first two equations represent the nonholonomic constraintsof
the car-like mobile robot. And because of the nonholonomity,
we control the off-center pointzi, defined by [12]:

zi =

[

x1i + L cos(θi) + ǫ cos(θi − φ)
x2i + L sin(θi) + ǫ sin(θi − φ)

]

, (24)

where − π
2 < φ < π

2 is the off-center angle, andǫ > 0.
Similar to the analysis on unicycle model, we can write the
car-like robot dynamics in Eq. (23) for the follower system
in stacked form:


































ẋf = gx(x, θf )

, −
1

1 + ǫ cos(φ)
P1(θf )P3(θf )⊤ ∂E

∂xf

⊤

(x)

θ̇f = gθ(x, θf )

, −
1

1 + ǫ cos(φ)
P2(θf )⊤ ∂E

∂xf

⊤

(x)

(25)

whereP3 ∈ R
2Nf ×Nf is defined as:

P3(θf ) ,











p3(θ1)
p3(θ2)

. . .
p3(θNf

)











, (26)

and

p3(θi) , [cos(θi) + ǫ cos(θi − φ), sin(θi) + ǫ sin(θi − φ)]⊤.
(27)

We also suppose that the movement of the leader (object) in
the centroid is given externally. In particular, this control law
given in Eq. (25) locally asymptotically stabilizes the car-like
robot formation to the desired shape, which can be proved
similarly to that of Proposition 1, where the same Lyapunov
candidate is used. We omit the derivation for brevity.

IV. READINESSOPTIMIZATION

Following the scenario shown in Fig. 1, and the system
dynamics with unicycle model given in Eq. (14) and control
law given by Eq. (19), suppose the system initial configura-
tion satisfies the desired distances with

x = x∗ =

[

x∗
f

x∗
l

]

,

where‖xi − xj‖ = dij , ∀{vi, vj} ∈ E. Note that the edge
set E represents the communication link shown in Fig. 1,
which does not change in time. Letδxl be the instantaneous
movement of the leader, given by:

δxl = γ

[

cos θl

sin θl

]

, (28)

where γ > 0, and θl is the direction of the movement.
Suppose that the leader will not move after this displacement,
i.e.,

x(0) = x∗ +

[

0
δxℓ

]

, x(t) = x∗ +

[

δxf (t)
δxℓ

]

, (29)



whereδxf (t) , xf (t) − x∗
f .

We are going to analyze the readiness of the system,
namely the set of initial headings of all followers, associated
with the cost given below:

J(x0) =

∫

U

Ψ(x(T ), u)du, (30)

where we letL = 0 in Eq. (4), since we only focus on the
final formation shape for simplicity. An example off(x, u)

and Ψ(x, u) is ẋ = − ∂E
∂x

⊤
(x, u) and E(x(T ), u), respec-

tively. The exogenous inputu is defined as the direction of
the movement of the object in the centroid, i.e.

u , θl, andU , [0, 2π].

In this case,J(x0) is an index to measure the change of edge-
tension energyE in the system under all the givenu ∈ U .

The optimal initial condition problem in terms of optimiz-
ing the readiness of the system depicted in Fig. 1 is given
by:

min
θ0

J(θ0) =

∫ 2π

0

Ψ(x(T ), u)du (31)

s.t. ẋ =

[

ẋf

ẋl

]

=

[

fx(x, θf , u)
0

]

xf (0) = x∗
f , θf (0) = θ0

xl(0) = δxl, θl(0) = θl

whereΨ(x(T ), u) = E(x(T ), u). Using calculus of varia-
tions, we get the FONC as

∂J

∂θ0
=

∫ 2π

0

λ⊤(0, u)du = 0, (32)

where














λ̇(t, u) = −
∂f

∂x

⊤

(x(t), u)λ(t, u) (33a)

λ(T, u) =
∂Ψ

∂x(T )

⊤

(x(T ), u) (33b)

Specifically, the derivation of FONC for both unicycle and
car-like models can be found in Appendix II.

V. RESULTS

Solving the optimal control problem given in Eq. (31)
numerically in MATLAB R© based on the following gradient
descent principle:

θ
(k+1)
0 = θ

(k)
0 − η

∂J

∂θ0

⊤

, (34)

where η is the step size andk is the iteration count.
Although the method of gradient descent does not give global
solution, we noticed that through multiple simulations, the
“Tangential” setup of the headings is more probable to be
the optimal solution. Therefore, our initial guess is set tobe
“Tangential”, where all follower headings are tangential to
the circle of convoy. If the initial guess is far from tangential,
the result might be some other local minimum. Note that the

Fig. 3. Edge-tension energy distribution with uniform heading; θl is used
in Eq. (28) to generate instantaneous movement of the leader, which is also
considered as the exogenous input.

Fig. 4. Edge-tension energy distribution with optimal initial heading

results shown in this section apply to both unicycle and car-
like models, since the control law itself is based on the same
formulation of edge-tension energy introduced in Section III-
A.

Fig. 3 shows distribution of the edge-tension energyE
when the initial headings of the followers are uniformly
aligned asθ0 = 0. The local minima shown in the figure
indicate that the formation system is “ready” for the leader’s
movement in the direction ofθl = 0 and θl = π, but is
not “ready” when the leader moves in any other direction.
Therefore, the overall “readiness” is low in terms of the cost
J given in Eq. (31) (which is also shown in Fig. 5).

Fig. 4 illustrate the edge-tension energy distribution when
initial headings of the followers are placed with the solution
to the optimal control problem given in Eq. (31). Clearly,
the energyE is decreased along all directions of the leader’s
movement. This means that the system with the optimal set
of headings has high readiness.

Fig. 5 depicts the costJ given in Eq. (31) under different
sets of initial headings, which also indicates the readiness
of the system. The curve marked “Optimal” shows the cost
J with optimal initial headings, which is slightly smaller
than the one with “Tangential” after approximately 0.2 time
units. An interesting observation is that the uniform and
random headings result in a very low cost in the beginning
of the formation recovering. This comes from the fact that
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Fig. 6. Optimal Initial Headings of the Convoy; the red arrows indicate
the headings.

the uniform heading setup has very low cost alongθl = 0
and θl = 2π direction, as shown in Fig. 3. The integration
of the cost over[0, 2π] benefits from this, and thus the cost
drops really fast in the beginning. However, the costs for
“Optimal” and “Tangential” headings approach zero much
faster, which indicates higher readiness for these two initial
conditions.

The optimal headings calculated numerically are depicted
in Fig. 6. The difference of this “Optimal” setup from the
“Tangential” one is ca.2.1 deg to the inner side of the circle.
This also reflects the fact that the tangential initial heading is
nearly optimal. In the case where the formation needs to be
moving or circling around the center object, the tangential
heading can behave just as well.

VI. CONCLUSION

In this paper, we have introduced the notion ofreadiness to
describe the initial conditions of a formation system in terms
of how well the system is prepared for a given set of input
space that consists of a variety of external disturbances. We
analyzed the optimal readiness and its first-order necessary
condition over a given input space, and applied the result to
a formation of nonholonomic mobile robots. It successfully
characterizes the optimal initial headings of the unicycleand
car-like robots for the case where the robots try to keep
the circular formation shape when the external disturbances
come from any direction in the plane. More examples to
demonstrate the usefulness of this notion will be studied in
the future.
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APPENDIX I
FIRST-ORDER NECESSARY CONDITION(FONC) FOR

OPTIMAL READINESS

Since the inputu is a constant over a short time interval,
and we are taking integration of this input over the entire
input spaceU for the system dynamics given in Eq. (1),
in order to avoid ambiguity, we denote the system state as
x(t, u) in the following derivation to point out thatx depends
on u implicitly.

Taking the constraint in Eq. (1) into account, we consider
the cost functional

Ĵ(x0) =

∫

U

[

∫ T

0

{

λ(t, u)
(

f(x(t, u), u) − ẋ
)

+ L(x(t, u), u)
}

dt + Ψ(x(T, u), u)

]

du. (35)



Suppose that a small change,x0 + ǫh, in the initial condi-
tion causes a small change,x(t, u) + ǫη(t, u), in the state
trajectory, whereǫ > 0. Then,

Ĵ(x0 + ǫh)

=

∫

U

[

∫ T

0

{

L(x(t, u) + ǫη(t, u), u)

+λ(t, u)
(

f(x(t, u) + ǫη(t, u), u) − (ẋ + ǫη̇)
)}

dt

+Ψ(x(T, u) + ǫη(T, u), u)

]

du. (36)

Due to the linearity of integration, the following difference
can be calculated with the Taylor expansions ofL, f , and
Ψ:

Ĵ(x0 + ǫh) − Ĵ(x0)

=

∫

U

[

∫ T

0

{∂L

∂x
ǫη(t, u) + λ(t, u)

∂f

∂x
ǫη(t, u)

−ǫλ(t, u)η̇
}

dt +
∂Ψ

∂x
ǫη(T, u)

]

du + o(ǫ)

= ǫ

∫

U

[

∫ T

0

{∂L

∂x
η(t, u) + λ(t, u)

∂f

∂x
η(t, u)

+λ̇η(t, u)
}

dt − λ(T, u)η(T, u) + λ(0, u)η(0, u)

+
∂Ψ

∂x(T, u)
η(T, u)

]

du + o(ǫ), (37)

where the last equality follows from integration by parts,

∫ T

0

λ(t, u)η̇dt = [λ(t, u)η(t, u)]T0 −

∫ T

0

λ̇η(t, u)dt. (38)

Dividing (37) by ǫ and taking the limitǫ → 0, we obtain the
directional derivative

δĴ(x0; h) = lim
ǫ→0

Ĵ(x0 + ǫh) − Ĵ(x0)

ǫ

=

∫

U

[

∫ T

0

{

∂L

∂x
+ λ

∂f

∂x
+ λ̇

}

η(t, u)dt

+

{

∂Ψ

∂x(T, u)
− λ(T, u)

}

η(T, u)

]

du

+

∫

U

λ(0, u)η(0, u)du. (39)

Combining the costate dynamics from Eq. (6), we have

δĴ(x0; h) =

∫

U

λ(0, u)η(0, u)du =

(
∫

U

λ(0, u)dt

)

h,

(40)
where we used the factη(0, u) = h, i.e., the change of initial
valuex0 + ǫh corresponds tox(0, u) + ǫη(0, u). Noting the

fact δĴ(x0; h) =
∂Ĵ

∂x0
h, the first-order necessary condition

is given by Eq. (5).

APPENDIX II
FONC FOR UNICYCLE AND CAR-LIKE MODELS

A. Unicycle Models

Based on the dynamics of unicycle models given in
Eq. (19), dynamics of the costateλ = [λ⊤

x , λ⊤
θ ]⊤ ∈

R
2Nf ×Nf can be described as:

λx(T, θl) =
∂E

∂xf

⊤

(x(T ), θl), λθ(T, θl) = 0 (41)

λ̇x = −
∂fx

∂xf

⊤

λx −
∂fθ

∂xf

⊤

λθ

=
∂2E

∂x2
f

(

P1P ⊤
1 λx +

1

ǫ
P2λθ

)

(42)

λ̇θ = −
∂fx

∂θf

⊤

λx −
∂fθ

∂θf

⊤

λθ

=

[

∂E

∂xf

](

(P1P ⊤
2 + P2P ⊤

1 )λx −
1

ǫ
P1λθ

)

(43)

where

[

∂E

∂xf

]

,





















∂E

∂x1
∂E

∂x2
. . .

∂E

∂xNf





















. (44)

Specifically, the first order necessary condition becomes:

∂J

∂θ0

⊤

=

∫ 2π

0

λθ(0, θl)dθl = 0. (45)

B. Car-like Models

Based on the dynamics of car-like robot models derived in
Eq. (25), dynamics of the costateξ = [ξ⊤

x , ξ⊤
θ ]⊤ ∈ R

2Nf ×Nf

can be described as:

ξx(T, θl) =
∂E

∂xf

⊤

(x(T ), θl), ξθ(T, θl) = 0 (46)

ξ̇x = −
∂fx

∂xf

⊤

ξx −
∂fθ

∂xf

⊤

ξθ

= η
∂2E

∂x2
f

(

P3P ⊤
1 ξx + P2ξθ

)

(47)

ξ̇θ = −
∂fx

∂θf

⊤

ξx −
∂fθ

∂θf

⊤

ξθ

= η

[

∂E

∂xf

]

(

(P3P ⊤
2 + P4P ⊤

1 )ξx − P1ξθ

)

(48)

where

η =
1

1 + ǫ cos(φ)
, P4 = P2(θf ) + ǫP2(θf − φ).

Specifically, the first order necessary condition becomes:

∂J

∂θ0

⊤

=

∫ 2π

0

ξθ(0, θl)dθl = 0. (49)


